Metal-organic framework glass composites

被引:21
|
作者
Lin, Rijia [1 ]
Chai, Milton [1 ]
Zhou, Yinghong [2 ]
Chen, Vicki [1 ,3 ]
Bennett, Thomas D. [4 ]
Hou, Jingwei [1 ]
机构
[1] Univ Queensland, Sch Chem Engn, St Lucia, Qld 4072, Australia
[2] Univ Queensland, Sch Dent, Herston, Qld 4006, Australia
[3] Univ Technol Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
[4] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
基金
澳大利亚研究理事会;
关键词
MESOPOROUS BIOACTIVE GLASS; COORDINATION POLYMER; PROTON CONDUCTIVITY; ELECTRICAL-CONDUCTIVITY; MOF COMPOSITE; LIQUID; CRYSTAL; POROSITY; TRANSPARENT;
D O I
10.1039/d2cs00315e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The melting phenomenon in metal-organic frameworks (MOFs) has been recognised as one of the fourth generation MOF paradigm behaviours. Molten MOFs have high processibility for producing mechanically robust glassy MOF macrostructures, and they also offer highly tunable interfacial characteristics when combined with other types of functional materials, such as crystalline MOFs, inorganic glass and metal halide perovskites. As a result, MOF glass composites have emerged as a family of functional materials with dynamic properties and hierarchical structural control. These nanocomposites allow for sophisticated materials science studies as well as the fabrication of next-generation separation, catalysis, optical, and biomedical devices. Here, we review the approaches for designing, fabricating, and characterising MOF glass composites. We determine the key application opportunities enabled by these composites and explore the remaining hurdles, such as improving thermal and chemical compatibility, regulating interfacial properties, and scalability.
引用
收藏
页码:4149 / 4172
页数:24
相关论文
共 50 条
  • [21] Metal-organic framework composites for energy conversion and storage
    Hang Wang
    Na Zhang
    Shumin Li
    Qinfei Ke
    Zhengquan Li
    Min Zhou
    Journal of Semiconductors, 2020, 41 (09) : 92 - 104
  • [22] Metal-organic framework composites for energy conversion and storage
    Wang, Hang
    Zhang, Na
    Li, Shumin
    Ke, Qinfei
    Li, Zhengquan
    Zhou, Min
    JOURNAL OF SEMICONDUCTORS, 2020, 41 (09)
  • [23] Metal-organic framework composites: from fundamentals to applications
    Li, Shaozhou
    Huo, Fengwei
    NANOSCALE, 2015, 7 (17) : 7482 - 7501
  • [24] Metal-organic framework composites as green/sustainable catalysts
    Liu, Kuan-Guan
    Sharifzadeh, Zahra
    Rouhani, Farzaneh
    Ghorbanloo, Massomeh
    Morsali, Ali
    COORDINATION CHEMISTRY REVIEWS, 2021, 436
  • [25] Controllable Synthesis of Metal-Organic Framework/Polyethersulfone Composites
    Guo, Xiaomin
    Zheng, Bin
    Wang, Jinlei
    CRYSTALS, 2020, 10 (01):
  • [26] Synthesis and characterization of metal-organic framework hydrogel composites
    Klein, Shirell
    Zarzar, Lauren
    Liu, Yangyang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [27] Design and sensing applications of metal-organic framework composites
    Lei, Jianping
    Qian, Ruocan
    Ling, Pinghua
    Cui, Lin
    Ju, Huangxian
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2014, 58 : 71 - 78
  • [28] Development of metal-organic framework composites in sample pretreatment
    Meng Zhichao
    Zhang Lu
    Huang Yanfeng
    CHINESE JOURNAL OF CHROMATOGRAPHY, 2018, 36 (03) : 216 - 221
  • [29] Novel metal-organic framework materials: blends, liquids, glasses and crystal-glass composites
    Tuffnell, Joshua M.
    Ashling, Christopher W.
    Hou, Jingwei
    Li, Shichun
    Longley, Louis
    Rios Gomez, Maria Laura
    Bennett, Thomas D.
    CHEMICAL COMMUNICATIONS, 2019, 55 (60) : 8705 - 8715
  • [30] Mapping short-range order at the nanoscale in metal-organic framework and inorganic glass composites
    Laulainen, Joonatan E. M.
    Johnstone, Duncan N.
    Bogachev, Ivan
    Longley, Louis
    Calahoo, Courtney
    Wondraczek, Lothar
    Keen, David A.
    Bennett, Thomas D.
    Collins, Sean M.
    Midgley, Paul A.
    NANOSCALE, 2022, 14 (44) : 16524 - 16535