Demand Forecasting Models for Food Industry by Utilizing Machine Learning Approaches

被引:0
|
作者
Nassibi, Nouran [1 ]
Fasihuddin, Heba [2 ]
Hsairi, Lobna [1 ,2 ,3 ]
机构
[1] Univ Jeddah, Dept Comp Sci & Artificial Intelligence, Jeddah 23443, Saudi Arabia
[2] Univ Jeddah, Dept Informat Syst & Technol, Jeddah 23443, Saudi Arabia
[3] Univ Jeddah, Jeddah 23443, Saudi Arabia
关键词
Machine learning; long short-term memory; support vector machine; food industry; supply chain management; demand forecasting; product sales;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Continued global economic instability and uncer-tainty is causing difficulties in predicting sales. As a result, many sectors and decision-makers are facing new, pressing challenges. In supply chain management, the food industry is a key sector in which sales movement and the demand forecasting for food products are more difficult to predict. Accurate sales forecasting helps to minimize stored and expired items across individual stores and, thus, reduces the potential loss of these expired products. To help food companies adapt to rapid changes and manage their supply chain more effectively, it is a necessary to utilize machine learning (ML) approaches because of ML's ability to process and evaluate large amounts of data efficiently. This research compares two forecasting models for confectionery products from one of the largest distribution companies in Saudi Arabia in order to improve the company's ability to predict demand for their products using machine learning algorithms. To achieve this goal, Support Vectors Machine (SVM) and Long Short-Term Memory (LSTM) algorithms were utilized. In addition, the models were evaluated based on their performance in forecasting quarterly time series. Both algorithms provided strong results when measured against the demand forecasting model, but overall the LSTM outperformed the SVM.
引用
收藏
页码:892 / 898
页数:7
相关论文
共 50 条
  • [31] Short-term water demand forecasting using data-centric machine learning approaches
    Liu, Guoxuan
    Savic, Dragan
    Fu, Guangtao
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (03) : 895 - 911
  • [32] Bike sharing and cable car demand forecasting using machine learning and deep learning multivariate time series approaches
    Pelaez-Rodriguez, Cesar
    Perez-Aracil, Jorge
    Fister, Dusan
    Torres-Lopez, Ricardo
    Salcedo-Sanz, Sancho
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [33] USING MACHINE LEARNING APPROACHES TO DEVELOP PRICE OPTIMISATION AND DEMAND PREDICTION MODELS FOR MULTIPLE PRODUCTS WITH DEMAND CORRELATION
    Lee, Keun Hee
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 108 (03) : 522 - 524
  • [34] Machine learning-assisted efficient demand forecasting using endogenous and exogenous indicators for the textile industry
    Yasir, Muhammad
    Ansari, Yasmeen
    Latif, Khalid
    Maqsood, Haider
    Habib, Adnan
    Moon, Jihoon
    Rho, Seungmin
    INTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONS, 2022,
  • [35] Survey of Machine Learning and Deep Learning Techniques for Travel Demand Forecasting
    Sison, Nicolai
    Li, Lin
    Han, Meng
    2021 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, INTERNET OF PEOPLE, AND SMART CITY INNOVATIONS (SMARTWORLD/SCALCOM/UIC/ATC/IOP/SCI 2021), 2021, : 606 - 613
  • [36] Hardware Trojan Detection Utilizing Machine Learning Approaches
    Hasegawa, Kento
    Shi, Youhua
    Togawa, Nozomu
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 1891 - 1896
  • [37] Machine learning models for renewable energy forecasting
    Tharani, Kusum
    Kumar, Neeraj
    Srivastava, Vishal
    Mishra, Sakshi
    Pratyush Jayachandran, M.
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2020, 23 (01): : 171 - 180
  • [38] Rainfall forecasting by technological machine learning models
    Hong, Wei-Chiang
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) : 41 - 57
  • [39] Machine Learning Models for Spring Discharge Forecasting
    Granata, Francesco
    Saroli, Michele
    de Marinis, Giovanni
    Gargano, Rudy
    GEOFLUIDS, 2018,
  • [40] For Better or Worse? Revenue Forecasting with Machine Learning Approaches
    Chung, Il Hwan
    Williams, Daniel W.
    Do, Myung Rok
    PUBLIC PERFORMANCE & MANAGEMENT REVIEW, 2022, 45 (05) : 1133 - 1154