Remediation of Cr(VI)-contaminated soil by sulfidated zero-valent iron: The effect of citric acid as eluant and modifying agent

被引:9
|
作者
Wang, Xiao [1 ]
Zhang, Yanshi [1 ]
Zhang, Yue [1 ]
Xu, Chunhua [1 ]
机构
[1] Shandong Univ, Sch Environm Sci & Engn, Shandong Key Lab Water Pollut Control & Resource R, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Cr(VI)-contaminated soil; Leaching; Sulfidated zero-valent iron; Citric acid; Reduction; CHROMIUM CONTAMINATED SOIL; HEAVY-METALS; ZEROVALENT IRON; CR(VI); SPECIATION; BCR; REDUCTION; NICKEL; IMMOBILIZATION; IMPROVEMENT;
D O I
10.1016/j.chemosphere.2022.137436
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Leaching and chemical reduction are two commonly used methods for Cr(VI)-contaminated soil remediation. Leaching focuses more on leaching Cr(VI) out of the soil. Chemical reduction has the disadvantages of poor fluidity of reductant. Combining these two remediation methods, this study investigated the performance of Cr (VI)-contaminated soil when H2O and citric acid were used as eluant separately and sulfidated zero-valent iron (SZVI) as reductant. And based on the properties of Cr(VI) chelated with -COOH to form a complex and the characteristics of -OH anchored to FeSx, citric acid modified SZVI (Cit-SZVI) was prepared. The prepared CitSZVI was characterized by SEM-EDS, XPS, XRD to study its surface properties. The transformation of Cr species in soil was explored by BCR sequential extraction. The results indicated Cr(VI) removal by SZVI was significantly promoted when citric acid as eluant compared with H2O. With SZVI dosage of 2.0 wt%, 23.1 mg/L Cr(VI) was basically removed within 60 min when citric acid as eluant, while only 60% Cr(VI) was removed when H2O as eluant even after 3 h. The kobs of Cit-SZVI was 1.4 times that of SZVI when H2O as eluant. The characterization of Cit-SZVI showed that more FeSx was formed on the surface of the Cit-SZVI, and more -OH of citric acid was anchored to FeSx, leaving -COOH available to chelate Cr(VI). Compared with H2O as eluant and SZVI/Cit-SZVI as reducing agent, the removal effect of Cr(VI) was the best when citric acid as eluant and SZVI as reducing agent. BCR sequential extraction showed that Cr(VI) was effectually fixed, weak acid extractable Cr proportion decreased significantly and residual Cr proportion increased in the treated soil. The combination of leaching and chemical reduction proposed in this study can greatly enhance the Cr(VI) removal effect in soil, which is important for the remediation of Cr(VI)-contaminated soil.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles
    Chang, Ming C.
    Kang, Hung Y.
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 2009, 44 (06): : 576 - 582
  • [42] Synthesizing sulfidated zero-valent iron for enhanced Cr(VI) removal: Impact of sulfur precursors on physicochemical properties
    Lin, Zishen
    Zheng, Chunli
    Ren, Jieling
    Zhu, Aibin
    He, Chi
    Pan, Hua
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 667
  • [43] Remediation of Cr(VI)-Contaminated Soil by Nano-Zero-Valent Iron in Combination with Biochar or Humic Acid and the Consequences for Plant Performance
    Sun, Yuhuan
    Zheng, Fangyuan
    Wang, Wenjie
    Zhang, Shuwu
    Wang, Fayuan
    TOXICS, 2020, 8 (02)
  • [44] Effect of zero-valent iron nanoparticles on the remediation of a clayish soil contaminated with γ-hexachlorocyclohexane (lindane) in a bioelectrochemical slurry reactor
    Duran-Perez, Fernando J.
    Zamora, Gregorio E.
    Medina Mendoza, Ana K.
    Gonzalez-Brambila, Margarita M.
    Tapia, Carlos
    Colin-Luna, Jose A.
    Garcia Martinez, Julio Cesar
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 99 (04): : 947 - 958
  • [45] Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles
    Su, Huijie
    Fang, Zhanqiang
    Tsang, Pokeung Eric
    Zheng, Liuchun
    Cheng, Wen
    Fang, Jianzhang
    Zhao, Dongye
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 318 : 533 - 540
  • [46] Are contaminated soil and groundwater remediation with nanoscale zero-valent iron sustainable? An analysis of case studies☆
    Visentin, Caroline
    Braun, Adeli Beatriz
    Reginatto, Cleomar
    Cecchin, Iziquiel
    Vanzetto, Guilherme Victor
    Thome, Antonio
    ENVIRONMENTAL POLLUTION, 2024, 352
  • [47] Remediation of DDTs contaminated soil in a novel Fenton-like system with zero-valent iron
    Cao, Menghua
    Wang, Lingling
    Wang, Li
    Chen, Jing
    Lu, Xiaohua
    CHEMOSPHERE, 2013, 90 (08) : 2303 - 2308
  • [48] Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles
    Bezbaruah, Achintya N.
    Thompson, Jay M.
    Chisholm, Bret J.
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART B-PESTICIDES FOOD CONTAMINANTS AND AGRICULTURAL WASTES, 2009, 44 (06) : 518 - 524
  • [49] Physicochemical Effects of Sulfur Precursors on Sulfidated Amorphous Zero-Valent Iron and Its Enhanced Mechanisms for Cr(VI) Removal
    Lin, Zishen
    Xu, Jiang
    Zhu, Aibin
    He, Chi
    Wang, Changzhao
    Zheng, Chunli
    LANGMUIR, 2023, 39 (27) : 9488 - 9502
  • [50] Remediation and its biological responses to Cd(II)-Cr(VI)-Pb(II) multi-contaminated soil by supported nano zero-valent iron composites
    Jin, Yi
    Wang, Yaxuan
    Li, Xi
    Luo, Ting
    Ma, Yongsong
    Wang, Bing
    Liang, Hong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 867