Koszul property of Ulrich bundles and rationality of moduli spaces of stable bundles on Del Pezzo surfaces

被引:0
|
作者
Bangere, Purnaprajna [1 ]
Mukherjee, Jayan [2 ]
Raychaudhury, Debaditya [3 ,4 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[3] Univ Toronto, Dept Math, Toronto, ON, Canada
[4] Univ Arizona, Dept Math, Tucson, AZ USA
基金
美国国家科学基金会;
关键词
VECTOR-BUNDLES; TANGENT BUNDLE; EXISTENCE;
D O I
10.1007/s00229-023-01530-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a vector bundle on a smooth projective variety X subset of P-N that is Ulrich with respect to the hyperplane section H. In this article, we study the Koszul property of E, the slope-semistability of the k-th iterated syzygy bundle S-k (E) for all k >= 0 and rationality of moduli spaces of slope-stable bundles on Del Pezzo surfaces. As a consequence of our study, we show that if X is a Del Pezzo surface of degree d >= 4, then any Ulrich bundle E satisfies the Koszul property and is slope-semistable. We also show that, for infinitely many Chern characters v = (r, c(1), c(2)), the corresponding moduli spaces of slope-stable bundles M-H(v) when non-empty, are rational, and thereby produce new evidences for a conjecture of Costa and Miro-Roig. As a consequence, we show that the iterated syzygy bundles of Ulrich bundles are dense in these moduli spaces.
引用
收藏
页码:847 / 874
页数:28
相关论文
共 50 条
  • [41] Real-Fibered Morphisms of del Pezzo Surfaces and Conic Bundles
    Kummer, Mario
    Le Texier, Cedric
    Manzaroli, Matilde
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (03) : 849 - 872
  • [42] Instanton bundles vs Ulrich bundles on projective spaces
    Costa, Laura
    Miro-Roig, Rosa M.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2021, 62 (02): : 429 - 439
  • [43] Rational surfaces and moduli spaces of vector bundles on rational surfaces
    L. Costa
    R. M. Miró-Roig
    Archiv der Mathematik, 2002, 78 : 249 - 256
  • [44] ULRICH BUNDLES ON ABELIAN SURFACES
    Beauville, Arnaud
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) : 4609 - 4611
  • [45] Ulrich Bundles on Enriques Surfaces
    Borisov, Lev
    Nuer, Howard
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (13) : 4171 - 4189
  • [46] Rational surfaces and moduli spaces of vector bundles on rational surfaces
    Costa, L
    Miró-Roig, RM
    ARCHIV DER MATHEMATIK, 2002, 78 (03) : 249 - 256
  • [47] ULRICH BUNDLES ON VERONESE SURFACES
    Coskun, Emre
    Genc, Ozhan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) : 4687 - 4701
  • [48] Ulrich bundles on ruled surfaces
    Aprodu, Marian
    Costa, Laura
    Maria Miro-Roig, Rosa
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (01) : 131 - 138
  • [49] Moduli spaces of vector bundles over ruled surfaces
    Aprodu, M
    Brînzanescu, V
    NAGOYA MATHEMATICAL JOURNAL, 1999, 154 : 111 - 122
  • [50] Minimal rational curves on moduli spaces of stable bundles
    Xiaotao Sun
    Mathematische Annalen, 2005, 331 : 925 - 937