Finding local Max-Cut in graphs in randomized polynomial time

被引:0
|
作者
Gao, Lunshan [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Phys & Comp Sci, 75 Univ Ave W, Waterloo, ON N2L3C5, Canada
关键词
Maximum cut problem; Randomized polynomial time; Fuzzy logic; Triangular fuzzy number; Laplacian matrix; Signed Laplacian matrix; MAXIMUM CUT; HEURISTICS; RELAXATION; ALGORITHMS;
D O I
10.1007/s00500-023-09230-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A maximum cut (Max-Cut) problem in graph theory is NP-hard. This paper proposes a new randomized algorithm for finding local Max-Cut in graphs by using fuzzy logic. This paper proves that: (1) the computational complexity of computing local Max-Cut in graphs is in the class of randomized polynomial time (RP); (2) the real number solution of the new algorithm satisfies epsilon - delta condition; (3) local Max-Cut solutions are maintained after defuzzification that converts real number vectors to integer vectors. Numerical experiments show that the new algorithm outperforms IBM CPLEX solvers. The new algorithm is nine times faster than the CPLEX Convex solver and more than thirty times faster than the CPLEX Global solver. The new algorithm could find local Max-Cut in signed graphs whereas CPLEX Convex solver failed to find Max-Cut in signed graphs when Laplacian matrix was not positive semidefinite.
引用
收藏
页码:3029 / 3048
页数:20
相关论文
共 50 条
  • [41] A 2|E|/4-time algorithm for max-cut
    Kulikov A.S.
    Fedin S.S.
    Journal of Mathematical Sciences, 2005, 126 (3) : 1200 - 1204
  • [42] A memetic algorithm for the max-cut problem
    Lin, Geng
    Zhu, Wenxing
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (01) : 69 - 77
  • [43] Local classical MAX-CUT algorithm outperforms p = 2 QAOA on high-girth regular graphs
    Marwaha, Kunal
    QUANTUM, 2021, 5
  • [44] Recursive QAOA outperforms the original QAOA for the MAX-CUT problem on complete graphs
    Bae, Eunok
    Lee, Soojoon
    QUANTUM INFORMATION PROCESSING, 2024, 23 (03)
  • [45] Recursive QAOA outperforms the original QAOA for the MAX-CUT problem on complete graphs
    Eunok Bae
    Soojoon Lee
    Quantum Information Processing, 23
  • [46] Continuous-time quantum walks for MAX-CUT are hot
    Banks, Robert J.
    Haque, Ehsan
    Nazef, Farah
    Fethallah, Fatima
    Ruqaya, Fatima
    Ahsan, Hamza
    Vora, Het
    Tahir, Hibah
    Ahmed, Ibrahim
    Hewins, Isaac
    Shah, Ishaq
    Baranwal, Krish
    Arora, Mannan
    Asad, Mateen
    Khan, Mubasshirah
    Hasan, Nabian
    Azad, Nuh
    Fedaiee, Salgai
    Majeed, Shakeel
    Bhuyan, Shayam
    Tarannum, Tasfia
    Ali, Yahya
    Browne, Dan E.
    Warburton, P. A.
    QUANTUM, 2024, 8
  • [47] A continuation algorithm for max-cut problem
    Xu, Feng Min
    Xu, Cheng Xian
    Li, Xing Si
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (07) : 1257 - 1264
  • [48] MAX-CUT BY EXCLUDING BIPARTIT SUBGRAPHS
    Wu, Shufei
    Li, Amin
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 108 (02) : 177 - 186
  • [49] Rank of Handelman hierarchy for Max-Cut
    Park, Myoung-Ju
    Hong, Sung-Pil
    OPERATIONS RESEARCH LETTERS, 2011, 39 (05) : 323 - 328
  • [50] Subexponential LPs Approximate Max-Cut
    Hopkins, Samuel B.
    Schramm, Tselil
    Trevisan, Luca
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 943 - 953