Physics implications of a combined analysis of COHERENT CsI and LAr data

被引:23
|
作者
De Romeri, V. [1 ,2 ]
Miranda, O. G. [3 ]
Papoulias, D. K. [4 ]
Garcia, G. Sanchez [1 ,2 ,3 ]
Tortola, M. [1 ,2 ]
Valle, J. W. F. [1 ,2 ]
机构
[1] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Parc Cientif Paterna,C Catedrat Jose Beltran, 2, E-46980 Valencia, Spain
[2] Univ Valencia, Dept Fis Teor, Parc Cientif Paterna,C Catedrat Jose Beltran, 2, E-46980 Valencia, Spain
[3] Ctr Invest & Estudios Avanzados IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico
[4] Natl & Kapodistrian Univ Athens, Dept Phys, Zografou Campus, GR-15772 Athens, Greece
关键词
Neutrino Interactions; Non-Standard Neutrino Properties; DARK GAUGE FORCES; MAJORANA NEUTRINOS; ELECTROMAGNETIC PROPERTIES; EXCLUSION LIMITS; SEARCH; SCATTERING; PARTICLES; MOMENT; DECAYS; CHARGE;
D O I
10.1007/JHEP04(2023)035
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The observation of coherent elastic neutrino nucleus scattering has opened the window to many physics opportunities. This process has been measured by the COHERENT Collaboration using two different targets, first CsI and then argon. Recently, the COHERENT Collaboration has updated the CsI data analysis with a higher statistics and an improved understanding of systematics. Here we perform a detailed statistical analysis of the full CsI data and combine it with the previous argon result. We discuss a vast array of implications, from tests of the Standard Model to new physics probes. In our analyses we take into account experimental uncertainties associated to the efficiency as well as the timing distribution of neutrino fluxes, making our results rather robust. In particular, we update previous measurements of the weak mixing angle and the neutron root mean square charge radius for CsI and argon. We also update the constraints on new physics scenarios including neutrino nonstandard interactions and the most general case of neutrino generalized interactions, as well as the possibility of light mediators. Finally, constraints on neutrino electromagnetic properties are also examined, including the conversion to sterile neutrino states. In many cases, the inclusion of the recent CsI data leads to a dramatic improvement of bounds.
引用
收藏
页数:41
相关论文
共 50 条
  • [31] Visual Physics Data Analysis in the Web Browser
    Brodski, M.
    Erdmann, M.
    Fischer, R.
    Hinzmann, A.
    Klimkovich, T.
    Klingebiel, D.
    Komm, M.
    Mueller, G.
    Steggemann, J.
    Winchen, T.
    [J]. INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010), 2011, 331
  • [32] Data analysis with R in an experimental physics environment
    Pfeiffer, Andreas
    Pia, Maria Grazia
    [J]. 2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2013,
  • [33] SYSTEM FOR DATA ACQUISITION AND ANALYSIS IN NUCLEAR PHYSICS
    WERY, M
    RING, C
    BUEB, B
    WITTMER, P
    [J]. NUCLEAR INSTRUMENTS & METHODS, 1971, 91 (03): : 333 - &
  • [34] Bayesian data analysis tools for atomic physics
    Trassinelli, Martino
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 408 : 301 - 312
  • [35] Using Parallelization in LHCB Physics Data Analysis
    Egorychev, A., V
    Belyaev, I. M.
    Ovsyannikova, T. A.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2021, 84 (12) : 1938 - 1941
  • [36] Online Data Collection and Analysis in Introductory Physics
    Nakamura, Christopher M.
    Murphy, Sytil K.
    Juma, Nasser M.
    Rebello, N. Sanjay
    Zollman, Dean
    [J]. 2009 PHYSICS EDUCATION RESEARCH CONFERENCE, 2009, 1179 : 217 - 220
  • [37] Using Parallelization in LHCB Physics Data Analysis
    A. V. Egorychev
    I. M. Belyaev
    T. A. Ovsyannikova
    [J]. Physics of Atomic Nuclei, 2021, 84 : 1938 - 1941
  • [38] Extracting physics through deep data analysis
    Strelcov, Evgheni
    Belianinov, Alexei
    Sumpter, Bobby G.
    Kalinin, Sergei V.
    [J]. MATERIALS TODAY, 2014, 17 (09) : 416 - 417
  • [39] Missing data: Implications for analysis
    Fitzmaurice, Garrett
    [J]. NUTRITION, 2008, 24 (02) : 200 - 202
  • [40] Stream Mining for Solar Physics Applications and Implications for Big Solar Data
    Battams, Karl
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014,