Using phenotypic data from the Electronic Health Record (EHR) to predict discharge

被引:1
|
作者
Bhatia, Monisha C. [1 ,2 ]
Wanderer, Jonathan P. [3 ,4 ]
Li, Gen [5 ]
Ehrenfeld, Jesse M. [3 ,4 ,5 ,6 ]
Vasilevskis, Eduard E. [7 ,8 ,9 ,10 ,11 ]
机构
[1] Vanderbilt Univ, Sch Med, 1161 21St Ave S, Nashville, TN 37232 USA
[2] Univ Calif San Francisco, 500 Parnassus Ave, San Francisco, CA 94143 USA
[3] Vanderbilt Univ, Med Ctr, Dept Anesthesiol, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Med Ctr, Dept Biomed Informat, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Sch Med, Dept Surg, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Sch Med, Dept Hlth Policy, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[7] Med Coll Wisconsin, 8701 Watertown Plank Rd, Wauwatosa, WI 53226 USA
[8] Vanderbilt Univ, Med Ctr, Sect Hosp Med, Div Gen Internal Med & Publ Hlth,Dept Med, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[9] VA Tennessee Valley Healthcare Syst, Geriatr Res Educ & Clin Ctr GRECC, 1310 24th Ave S, Nashville, TN 37212 USA
[10] Vanderbilt Univ, Med Ctr, Ctr Qual Aging, Dept Med, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[11] Vanderbilt Univ, Med Ctr, Ctr Clin Qual & Implementat Res, 1211 Med Ctr Dr, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
Post-acute care; Prediction models; Frailty; Functional status; Health systems; RISK; ADMISSION; SCORE; MODEL; INDEX;
D O I
10.1186/s12877-023-04147-y
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
BackgroundTimely discharge to post-acute care (PAC) settings, such as skilled nursing facilities, requires early identification of eligible patients. We sought to develop and internally validate a model which predicts a patient's likelihood of requiring PAC based on information obtained in the first 24 h of hospitalization.MethodsThis was a retrospective observational cohort study. We collected clinical data and commonly used nursing assessments from the electronic health record (EHR) for all adult inpatient admissions at our academic tertiary care center from September 1, 2017 to August 1, 2018. We performed a multivariable logistic regression to develop the model from the derivation cohort of the available records. We then evaluated the capability of the model to predict discharge destination on an internal validation cohort.ResultsAge (adjusted odds ratio [AOR], 1.04 [per year]; 95% Confidence Interval [CI], 1.03 to 1.04), admission to the intensive care unit (AOR, 1.51; 95% CI, 1.27 to 1.79), admission from the emergency department (AOR, 1.53; 95% CI, 1.31 to 1.78), more home medication prescriptions (AOR, 1.06 [per medication count increase]; 95% CI 1.05 to 1.07), and higher Morse fall risk scores at admission (AOR, 1.03 [per unit increase]; 95% CI 1.02 to 1.03) were independently associated with higher likelihood of being discharged to PAC facility. The c-statistic of the model derived from the primary analysis was 0.875, and the model predicted the correct discharge destination in 81.2% of the validation cases.ConclusionsA model that utilizes baseline clinical factors and risk assessments has excellent model performance in predicting discharge to a PAC facility.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [11] Using Electronic Health Record(EHR) Data to Evaluate Kidney Function Decline in Children with CKD
    Gluck, Caroline A.
    Davies, Amy Goodwin
    Mcdonald, Jill R.
    Maltenfort, Mitchell
    Mitsnefes, Mark
    Dharnidharka, Vikas R.
    Dixon, Bradley P.
    Flynn, Joseph T.
    Somers, Michael J.
    Smoyer, William E.
    Neu, Alicia
    Hovinga, Collin A.
    Skversky, Amy L.
    Eissing, Thomas
    Kaiser, Andreas
    Breitenstein, Stefanie
    Furth, Susan L.
    Forrest, Christopher B.
    Denburg, Michelle
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 51 - 52
  • [12] Assessing The Geospatial Distribution Of Asthma Exacerbations Using Electronic Health Record (ehr)-Derived Data
    Xie, S.
    Greenblatt, R.
    Levy, M.
    Himes, B. E.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [13] Missing clinical and behavioral health data in a large electronic health record (EHR) system
    Madden, Jeanne M.
    Lakoma, Matthew D.
    Rusinak, Donna
    Lu, Christine Y.
    Soumerai, Stephen B.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2016, 23 (06) : 1143 - 1149
  • [14] Standard Method for Assessment of Electronic Health Record (EHR) Data Sources for Pharmacoepidemiology
    Agbor, Stephen O. T.
    Kamauu, Allise G.
    Kamauu, Aaron W. C.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2013, 22 : 286 - 286
  • [15] CRLEDD: Regularized Causalities Learning for Early Detection of Diseases Using Electronic Health Record (EHR) Data
    Bian, Jiang
    Yang, Sijia
    Xiong, Haoyi
    Wang, Licheng
    Fu, Yanjie
    Sun, Zeyi
    Guo, Zhishan
    Wang, Jun
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (04): : 541 - 553
  • [16] Integrating data from apps, wearables and personal Electronic Health Record (pEHR) systems with clinicians' Electronic Health Records (EHR) systems
    Giordanengo, Alain
    Bradway, Meghan
    Pedersen, Rune
    Grottland, Astrid
    Hartvigsen, Gunnar
    Arsand, Eirik
    INTERNATIONAL JOURNAL OF INTEGRATED CARE, 2016, 16
  • [17] Methodological Controversies from Comparative Effectiveness (CE) Studies Using Claims vs. Electronic Health Record (EHR) Data
    Setoguchi, Soko
    Shah, Nirav
    Roy, Jason
    Winkelmayer, Wolfgang
    Glynn, Robert
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2010, 19 : S16 - S17
  • [18] Bidirectional Representation Learning From Transformers Using Multimodal Electronic Health Record Data to Predict Depression
    Meng, Yiwen
    Speier, William
    Ong, Michael K.
    Arnold, Corey W.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (08) : 3121 - 3129
  • [19] Documenting electronic health record (EHR) system value
    Weitzel, R
    TOWARD AN ELECTRONIC PATIENT RECORD '98 CONFERENCE AND EXPOSITION, PROCEEDINGS - VOLS 1-3, 1998, : B358 - B360
  • [20] Evaluating the Usability of the OpenVista Electronic Health Record EHR
    Markowitz, Eliz
    IMCIC'11: THE 2ND INTERNATIONAL MULTI-CONFERENCE ON COMPLEXITY, INFORMATICS AND CYBERNETICS, VOL I, 2011, : 229 - 234