Using phenotypic data from the Electronic Health Record (EHR) to predict discharge

被引:1
|
作者
Bhatia, Monisha C. [1 ,2 ]
Wanderer, Jonathan P. [3 ,4 ]
Li, Gen [5 ]
Ehrenfeld, Jesse M. [3 ,4 ,5 ,6 ]
Vasilevskis, Eduard E. [7 ,8 ,9 ,10 ,11 ]
机构
[1] Vanderbilt Univ, Sch Med, 1161 21St Ave S, Nashville, TN 37232 USA
[2] Univ Calif San Francisco, 500 Parnassus Ave, San Francisco, CA 94143 USA
[3] Vanderbilt Univ, Med Ctr, Dept Anesthesiol, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Med Ctr, Dept Biomed Informat, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Sch Med, Dept Surg, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Sch Med, Dept Hlth Policy, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[7] Med Coll Wisconsin, 8701 Watertown Plank Rd, Wauwatosa, WI 53226 USA
[8] Vanderbilt Univ, Med Ctr, Sect Hosp Med, Div Gen Internal Med & Publ Hlth,Dept Med, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[9] VA Tennessee Valley Healthcare Syst, Geriatr Res Educ & Clin Ctr GRECC, 1310 24th Ave S, Nashville, TN 37212 USA
[10] Vanderbilt Univ, Med Ctr, Ctr Qual Aging, Dept Med, 1211 Med Ctr Dr, Nashville, TN 37232 USA
[11] Vanderbilt Univ, Med Ctr, Ctr Clin Qual & Implementat Res, 1211 Med Ctr Dr, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
Post-acute care; Prediction models; Frailty; Functional status; Health systems; RISK; ADMISSION; SCORE; MODEL; INDEX;
D O I
10.1186/s12877-023-04147-y
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
BackgroundTimely discharge to post-acute care (PAC) settings, such as skilled nursing facilities, requires early identification of eligible patients. We sought to develop and internally validate a model which predicts a patient's likelihood of requiring PAC based on information obtained in the first 24 h of hospitalization.MethodsThis was a retrospective observational cohort study. We collected clinical data and commonly used nursing assessments from the electronic health record (EHR) for all adult inpatient admissions at our academic tertiary care center from September 1, 2017 to August 1, 2018. We performed a multivariable logistic regression to develop the model from the derivation cohort of the available records. We then evaluated the capability of the model to predict discharge destination on an internal validation cohort.ResultsAge (adjusted odds ratio [AOR], 1.04 [per year]; 95% Confidence Interval [CI], 1.03 to 1.04), admission to the intensive care unit (AOR, 1.51; 95% CI, 1.27 to 1.79), admission from the emergency department (AOR, 1.53; 95% CI, 1.31 to 1.78), more home medication prescriptions (AOR, 1.06 [per medication count increase]; 95% CI 1.05 to 1.07), and higher Morse fall risk scores at admission (AOR, 1.03 [per unit increase]; 95% CI 1.02 to 1.03) were independently associated with higher likelihood of being discharged to PAC facility. The c-statistic of the model derived from the primary analysis was 0.875, and the model predicted the correct discharge destination in 81.2% of the validation cases.ConclusionsA model that utilizes baseline clinical factors and risk assessments has excellent model performance in predicting discharge to a PAC facility.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Using phenotypic data from the Electronic Health Record (EHR) to predict discharge
    Monisha C. Bhatia
    Jonathan P. Wanderer
    Gen Li
    Jesse M. Ehrenfeld
    Eduard E. Vasilevskis
    [J]. BMC Geriatrics, 23
  • [2] Development and Validation of Machine Learning Models to Predict Bacteremia and Fungemia Using Electronic Health Record (EHR) Data
    Bhavani, S.
    Lonjers, Z.
    Carey, K.
    Gilbert, E. R.
    Afshar, M.
    Shah, N.
    Huang, E.
    Churpek, M. M.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201
  • [3] Innovate or die!: Genomic data and the electronic health record (EHR)
    Fein, Rebecca
    [J]. APPLIED AND TRANSLATIONAL GENOMICS, 2014, 3 (04): : 130 - 131
  • [4] Challenges of using electronic health record (EHR) data for medication exposure and comparison with claims data
    Stevens, Lauren
    Schlienger, Raymond
    Parambi, Ron
    Norman, Heather
    Enger, Cheryl
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2018, 27 : 120 - 121
  • [5] Addressing methodological and logistical challenges of using electronic health record (EHR) data for research
    Bakken, Suzanne
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (07) : 1449 - 1450
  • [6] Physicians and nurses' readiness in using electronic health record (EHR)
    Herlambang, Rasyid
    Pertiwi, Ariani Arista Putri
    Sugiarsih
    [J]. ENFERMERIA CLINICA, 2021, 31 (S 3): : 489 - 494
  • [7] USING ELECTRONIC HEALTH RECORD DATA TO PREDICT HEART FAILURE DIAGNOSIS
    Shah, N. R.
    Roy, J.
    Stewart, W. F.
    [J]. JOURNAL OF GENERAL INTERNAL MEDICINE, 2009, 24 : 210 - 210
  • [8] Multimorbidity and Cancer: Using Electronic Health Record (EHR) Data to Cluster Patients in Multimorbidity Phenotypes
    Gilbertson-White, Stephanie
    Srivastava, Sanvesh
    Li, Yunyi
    Laures, Elyse
    Saeidzadeh, Seyedehtanaz
    Yeung, Chi
    Chae, Sena
    [J]. JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, 2020, 59 (02) : 579 - 579
  • [9] Multimorbidity and Cancer: Using Electronic Health Record (EHR) Data to Cluster Patients in Multimorbidity Phenotypes
    Gilbertson-White, Stephanie
    Srivastava, Sanvesh
    Li, Yunyi
    Laures, Elyse
    Saeidzadeh, Seyedehtanaz
    Yeung, Chi
    Chae, Sena
    [J]. JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, 2020, 60 (01) : 266 - 266
  • [10] Development and validation of an asthma exacerbation prediction model using electronic health record (EHR) data
    Martin, Alfred
    Bauer, Victoria
    Datta, Avisek
    Masi, Christopher
    Mosnaim, Giselle
    Solomonides, Anthony
    Rao, Goutham
    [J]. JOURNAL OF ASTHMA, 2020, 57 (12) : 1339 - 1346