Excitatory amino acid transporter 1 supports adult hippocampal neural stem cell self-renewal

被引:5
|
作者
Rieskamp, Joshua D. [1 ,6 ]
Rosado-Burgos, Ileanexis [1 ]
Christofi, Jacob E. [1 ]
Ansar, Eliza [1 ,5 ]
Einstein, Dalia [1 ]
Walters, Ashley E. [1 ]
Valentini, Valentina [1 ,4 ]
Bruno, John P. [1 ,2 ]
Kirby, Elizabeth D. [1 ,2 ,3 ]
机构
[1] Ohio State Univ, Dept Psychol, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
[3] Ohio State Univ, Chron Brain Injury Program, Columbus, OH 43210 USA
[4] Univ Cagliari, Dept Biomed Sci, I-09124 Cagliari, Italy
[5] New York Coll Podiatr Med, New York, NY 10035 USA
[6] Global Regulatory Writing & Consulting, Tukwila, WA 98168 USA
基金
美国国家卫生研究院;
关键词
PROGENITOR CELLS; DENTATE GYRUS; RADIAL GLIA; NEUROGENESIS; GLUTAMATE; LONG; QUIESCENCE; ASTROCYTES; RECEPTORS; CYTOSCAPE;
D O I
10.1016/j.isci.2023.107068
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Within the adult mammalian dentate gyrus (DG) of the hippocampus, glutamate stimulates neural stem cell (NSC) self-renewing proliferation, providing a link between adult neurogenesis and local circuit activity. Here, we show that glutamate-induced self-renewal of adult DG NSCs requires glutamate transport via excitatory amino acid transporter 1 (EAAT1) to stimulate lipogenesis. Loss of EAAT1 prevented glutamate-induced self-renewing proliferation of NSCs in vitro and in vivo, with little role evident for canonical glutamate receptors. Transcriptomics and further pathway manipulation revealed that glutamate simulation of NSCs relied on EAAT1 transport-stimulated lipogenesis. Our findings demonstrate a critical, direct role for EAAT1 in stimulating NSCs to support neurogenesis in adulthood, thereby providing insights into a non-canonical mechanism by which NSCs sense and respond to their niche.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] The Splicing Factor RBM17 Supports Leukemia Stem Cell Self-Renewal
    Liu, Lina
    Vujovic, Ana
    Xu, Joshua
    Hope, Kristin
    Lu, Yu
    BLOOD, 2019, 134
  • [32] Excitatory amino acid transporter supports inflammatory macrophage responses
    Gan, Zhending
    Guo, Yan
    Zhao, Muyang
    Ye, Yuyi
    Liao, Yuexia
    Liu, Bingnan
    Yin, Jie
    Zhou, Xihong
    Yan, Yuqi
    Yin, Yulong
    Ren, Wenkai
    SCIENCE BULLETIN, 2024, 69 (15) : 2405 - 2419
  • [33] Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal
    Leatherman, Judith L.
    DiNardo, Stephen
    CELL STEM CELL, 2008, 3 (01) : 44 - 54
  • [34] SIRT1 regulates the balance between self-renewal and differentiation of adult hippocampal neural stem cells via inhibion of Notch signaling
    Ma, C.
    Yao, M.
    Zhai, Q.
    Jiao, J.
    Yuan, X.
    JOURNAL OF NEUROCHEMISTRY, 2012, 123 : 110 - 110
  • [35] A single cell bioengineering approach to elucidate mechanisms of adult stem cell self-renewal
    Gilbert, Penney M.
    Corbel, Stephane
    Doyonnas, Regis
    Havenstrite, Karen
    Magnusson, Klas E. G.
    Blau, Helen M.
    INTEGRATIVE BIOLOGY, 2012, 4 (04) : 360 - 367
  • [36] Excitatory amino acid transporter 2 and excitatory amino acid transporter 1 negatively regulate calcium-dependent proliferation of hippocampal neural progenitor cells and are persistently upregulated after injury
    Gilley, Jennifer A.
    Kernie, Steven G.
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2011, 34 (11) : 1712 - 1723
  • [37] Pten, tumorigenesis, and stem cell self-renewal
    Rossi, DJ
    Weissman, IL
    CELL, 2006, 125 (02) : 229 - 231
  • [38] The genetic regulation of stem cell self-renewal
    Morrison, SJ
    MOLECULAR BIOLOGY OF THE CELL, 2004, 15 : 361A - 361A
  • [39] Plzf is required in adult male germ cells for stem cell self-renewal
    F William Buaas
    Andrew L Kirsh
    Manju Sharma
    Derek J McLean
    Jamie L Morris
    Michael D Griswold
    Dirk G de Rooij
    Robert E Braun
    Nature Genetics, 2004, 36 : 647 - 652
  • [40] Stem cell self-renewal in intestinal crypt
    Simons, Benjamin D.
    Clevers, Hans
    EXPERIMENTAL CELL RESEARCH, 2011, 317 (19) : 2719 - 2724