Slow-light silicon modulator with 110-GHz bandwidth

被引:26
|
作者
Han, Changhao [1 ]
Zheng, Zhao [1 ]
Shu, Haowen [1 ,2 ,3 ]
Jin, Ming [1 ]
Qin, Jun [4 ]
Chen, Ruixuan [1 ]
Tao, Yuansheng [1 ]
Shen, Bitao [1 ]
Bai, Bowen [1 ]
Yang, Fenghe [5 ]
Wang, Yimeng [1 ]
Wang, Haoyu [1 ]
Wang, Feifan [1 ]
Zhang, Zixuan [1 ]
Yu, Shaohua [1 ,2 ]
Peng, Chao [1 ,2 ,3 ]
Wang, Xingjun [1 ,2 ,3 ,6 ]
机构
[1] Peking Univ, Sch Elect, State Key Lab Adv Opt Commun Syst & Networks, Beijing 100871, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[3] Peking Univ, Frontiers Sci Ctr Nanooptoelectron, Beijing 100871, Peoples R China
[4] Beijing Informat Sci & Technol Univ, Key Lab Informat & Commun Syst, Minist Informat Ind, Beijing 100192, Peoples R China
[5] Zhang Jiang Lab, Shanghai 201210, Peoples R China
[6] Peking Univ, Yangtze Delta Inst Optoelect, Nantong 226010, Peoples R China
基金
中国国家自然科学基金;
关键词
MACH-ZEHNDER MODULATOR; OPTICAL WAVE-GUIDE; GB/S; TRANSMISSION; JUNCTION; CHIP;
D O I
10.1126/sciadv.adi5339
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Silicon modulators are key components to support the dense integration of electro-optic functional elements for various applications. Despite numerous advances in promoting the modulation speed, a bandwidth ceiling emerges in practices and becomes an obstacle toward Tbps-level throughput on a single chip. Here, we demonstrate a compact pure silicon modulator that shatters present bandwidth ceiling to 110 gigahertz. The proposed modulator is built on a cascade corrugated waveguide architecture, which gives rise to a slow-light effect. By comprehensively balancing a series of merits, the modulators can benefit from the slow light for better efficiency and compact size while remaining sufficiently high bandwidth. Consequently, we realize a 110-gigahertz modulator with 124-micrometer length, enabling 112 gigabits per second on-off keying operation. Our work proves that silicon modulators with 110 gigahertz are feasible, thus shedding light on its potentials in ultrahigh bandwidth applications such as optical interconnection and photonic machine learning.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Localization in silicon nanophotonic slow-light waveguides
    Mookherjea, Shayan
    Park, Jung S.
    Yang, Shun-Hui
    Bandaru, Prabhakar R.
    NATURE PHOTONICS, 2008, 2 (02) : 90 - 93
  • [12] 1.5-GHZ BANDWIDTH LIGHT MODULATOR
    CHOW, KK
    COMSTOCK, RL
    LEONARD, WB
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1969, QE 5 (12) : 618 - &
  • [13] Slow-Light Silicon Mach-Zehnder Modulator Based-on Cascaded Ring Resonators
    Kurahashi, Akiyama T.
    Baba, T.
    Hatori, N.
    Usuki, T.
    Yamamoto, T.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [14] SUPERFINE E-BEAM LITHOGRAPHY IS THE KEY TO 110-GHZ SILICON PHOTODIODES
    GOLDBERG, L
    ELECTRONIC DESIGN, 1994, 42 (08) : 38 - +
  • [15] COMPOSITE IMPATT DIODES FOR 110-GHZ OPERATION
    MARINACCIO, LP
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (01): : 94 - +
  • [16] Maximization of Gain in Slow-Light Silicon Raman Amplifiers
    Rukhlenko, Ivan D.
    Premaratne, Malin
    Agrawal, Govind P.
    INTERNATIONAL JOURNAL OF OPTICS, 2011, 2011
  • [17] 0.8 TO 2.3-GHZ BANDWIDTH LIGHT MODULATOR
    CHOW, KK
    COMSTOCK, RL
    LEONARD, WB
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1970, QE 6 (01) : 7 - &
  • [18] CONNECTORS AID DESIGN OF 110-GHZ COMPONENTS
    OLDFIELD, W
    MICROWAVES & RF, 1994, 33 (06) : 151 - 152
  • [19] A 110-GHz AlSb/InAs MMIC amplifier
    Deal, W
    Tsai, R
    Lange, M
    Boos, JB
    Bennett, BR
    Grundbacker, R
    Lee, LJ
    Padmanabhan, K
    Liu, PH
    Namba, C
    Gutierrez, A
    2004 IEEE CSIC SYMPOSIUM, TECHNICAL DIGEST 2004: 26TH ANNIVERSARY: COMPOUNDING YOUR CHIPS IN MONTEREY, 2004, : 301 - 304
  • [20] Novel slow-light waveguide with large bandwidth and ultra low dispersion
    Meng, Bo
    Wang, Ling-ling
    Li, Xiao-fei
    Xiao, Wen-zhi
    Wang, Liu
    Xiang, Dong
    OPTICS COMMUNICATIONS, 2012, 285 (18) : 3704 - 3708