Kernelization for feedback vertex set via elimination distance to a forest☆

被引:0
|
作者
Dekker, David J. C. [1 ]
Jansen, Bart M. P. [1 ]
机构
[1] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands
基金
欧洲研究理事会;
关键词
Feedback vertex set; Kernelization; Elimination distance; HITTING FORBIDDEN MINORS; STRUCTURAL PARAMETERIZATIONS; POLYNOMIAL KERNELS; LINEAR-TIME; COVER; ECOLOGY;
D O I
10.1016/j.dam.2023.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study efficient preprocessing for the undirected FEEDBACK VERTEX SET problem, a fundamental problem in graph theory which asks for a minimum-sized vertex set whose removal yields an acyclic graph. More precisely, we aim to determine for which parameterizations this problem admits a polynomial kernel. While a characterization is known for the related VERTEX COVER problem based on the recently introduced notion of bridge-depth, it remained an open problem whether this could be generalized to FEEDBACK VERTEX SET. The answer turns out to be negative; the existence of polynomial kernels for structural parameterizations for FEEDBACK VERTEX SET is governed by the elimination distance to a forest. Under the standard assumption NP subset of coNP/poly, we prove that for any minor-closed graph class G, FEEDBACK VERTEX SET parameterized by the size of a modulator to G has a polynomial kernel if and only if G has bounded elimination distance to a forest. This captures and generalizes all existing kernels for structural parameterizations of the FEEDBACK VERTEX SET problem.
引用
收藏
页码:192 / 214
页数:23
相关论文
共 50 条
  • [21] Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (01)
  • [22] Polyhedral aspects of feedback vertex set and pseudoforest deletion set
    Chandrasekaran, Karthekeyan
    Chekuri, Chandra
    Fiorini, Samuel
    Kulkarni, Shubhang
    Weltge, Stefan
    MATHEMATICAL PROGRAMMING, 2025,
  • [23] Simple Proof of Hardness of Feedback Vertex Set
    Guruswami, Venkatesan
    Lee, Euiwoong
    THEORY OF COMPUTING, 2016, 12
  • [24] Feedback Vertex Set in Alternating Group Graphs
    Wang, Jian
    Xu, Xirong
    Gao, Liqing
    Zhu, Dejun
    Yang, Yuansheng
    UTILITAS MATHEMATICA, 2017, 103 : 237 - 243
  • [25] FPT algorithms for Connected Feedback Vertex Set
    Neeldhara Misra
    Geevarghese Philip
    Venkatesh Raman
    Saket Saurabh
    Somnath Sikdar
    Journal of Combinatorial Optimization, 2012, 24 : 131 - 146
  • [26] Feedback vertex set reconfiguration in planar graphs
    Bousquet, Nicolas
    Hommelsheim, Felix
    Kobayashi, Yusuke
    Muehlenthaler, Moritz
    Suzuki, Akira
    THEORETICAL COMPUTER SCIENCE, 2023, 979
  • [27] A linear kernel for planar feedback vertex set
    Bodlaender, Hans L.
    Penninkx, Eelko
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2008, 5018 : 160 - 171
  • [28] FPT algorithms for Connected Feedback Vertex Set
    Misra, Neeldhara
    Philip, Geevarghese
    Raman, Venkatesh
    Saurabh, Saket
    Sikdar, Somnath
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (02) : 131 - 146
  • [29] Feedback vertex set on AT-free graphs
    Kratsch, Dieter
    Mueller, Haiko
    Todinca, Ioan
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (10) : 1936 - 1947
  • [30] ON THE FEEDBACK VERTEX SET PROBLEM IN PERMUTATION GRAPHS
    LIANG, YD
    INFORMATION PROCESSING LETTERS, 1994, 52 (03) : 123 - 129