Fast bi-monocular Visual Odometry using Factor Graph Sparsification

被引:1
|
作者
Debeunne, Cesar [1 ]
Vallve, Joan [2 ]
Torres, Alex [3 ]
Vivet, Damien [1 ]
机构
[1] Univ Toulouse, ISAE SUPAERO, Toulouse, France
[2] CSIC UPC, Inst Robot & Informat Ind IRI, Barcelona, Spain
[3] CNES, Paris, France
关键词
SLAM;
D O I
10.1109/IROS55552.2023.10341644
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual navigation has become a standard in robotic applications with the emergence of robust and versatile algorithms. In particular, Visual Odometry (VO) has proven to be the most reliable navigation solution for space missions to estimate an unmanned vehicle's motion and state. Lava Tubes exploration is one of the recent challenges in this field of applied robotics. VO in this scenario requires more robustness to poor lighting conditions while keeping a low computational cost. We propose investigating an indirect bi-monocular VO based on sliding-window optimization in such a context. It focuses on maintaining the sparsity of the problem while keeping the information of the marginalized frames to reduce the computational burden. Different sparse graph topologies are studied to encode information from the past and are evaluated on accuracy and computation load. The best method retained is then compared to state-of-the-art systems on real data under extreme illumination conditions and reaches similar accuracy results at a lower computational cost.
引用
收藏
页码:10716 / 10722
页数:7
相关论文
共 50 条
  • [21] CCVO: Cascaded CNNs for Fast Monocular Visual Odometry Towards the Dynamic Environment
    Zhang, Tiantian
    Li, Ni
    Gong, Guanghong
    Yang, Chaopin
    Hou, Guoqing
    Lin, Xin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (05) : 2938 - 2945
  • [22] Monocular Visual Odometry in Urban Environments Using an Omnidirectional Camera
    Tardif, Jean-Philippe
    Pavlidis, Yanis
    Daniilidis, Kostas
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 2531 - 2538
  • [23] Using Unsupervised Deep Learning Technique for Monocular Visual Odometry
    Liu, Qiang
    Li, Ruihao
    Hu, Huosheng
    Gu, Dongbing
    IEEE ACCESS, 2019, 7 : 18076 - 18088
  • [24] Stereo Visual Odometry Failure Recovery Using Monocular Techniques
    Giubilato, Riccardo
    Chiodini, Sebastiano
    Pertile, Marco
    Debei, Stefano
    2017 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), 2017, : 158 - 163
  • [25] Monocular Visual Odometry Scale Recovery using Geometrical Constraint
    Wang, Xiangwei
    Zhang, Hui
    Yin, Xiaochuan
    Du, Mingxiao
    Chen, Qijun
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 988 - 995
  • [26] A fast initialization method of Visual-Inertial Odometry based on monocular camera
    Huang, Lixiao
    Pan, Shuguo
    Wang, Shuai
    Zeng, Pan
    Ye, Fei
    PROCEEDINGS OF 5TH IEEE CONFERENCE ON UBIQUITOUS POSITIONING, INDOOR NAVIGATION AND LOCATION-BASED SERVICES (UPINLBS), 2018, : 70 - 74
  • [27] Monocular Visual Odometry Using Vertical Lines in Urban Area
    Li, Haifeng
    Wang, Hongpeng
    Liu, Jingtai
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 5676 - 5681
  • [28] Scale Correct Monocular Visual Odometry Using a LiDAR Altimeter
    Giubilato, Riccardo
    Chiodini, Sebastiano
    Pertile, Marco
    Debei, Stefano
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 3694 - 3700
  • [29] A Novel Resection-Intersection Algorithm With Fast Triangulation Applied to Monocular Visual Odometry
    Pereira, Fabio Irigon
    Luft, Joel Augusto
    Ilha, Gustavo
    Susin, Altamiro
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (11) : 3584 - 3593
  • [30] Lidar-Monocular Visual Odometry using Point and Line Features
    Huang, Shi-Sheng
    Ma, Ze-Yu
    Mu, Tai-Jiang
    Fu, Hongbo
    Hu, Shi-Min
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 1091 - 1097