SwinUNet: a multiscale feature learning approach to cardiovascular magnetic resonance parametric mapping for myocardial tissue characterization

被引:0
|
作者
Qi, Yifan [1 ]
Wang, Fusheng [1 ]
Kong, Jun [2 ]
Cao, J. Jane [3 ,4 ]
Li, Yu Y. [3 ,5 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11790 USA
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[3] USA, Blountstown, FL 11576 USA
[4] SUNY Stony Brook, Clin Med, Stony Brook, NY 11790 USA
[5] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11790 USA
关键词
cardiovascular magnetic resonance; parametric mapping; multiscale feature learning; HEART;
D O I
10.1088/1361-6579/ad2c15
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Objective. Cardiovascular magnetic resonance (CMR) can measure T1 and T2 relaxation times for myocardial tissue characterization. However, the CMR procedure for T1/T2 parametric mapping is time-consuming, making it challenging to scan heart patients routinely in clinical practice. This study aims to accelerate CMR parametric mapping with deep learning. Approach. A deep-learning model, SwinUNet, was developed to accelerate T1/T2 mapping. SwinUNet used a convolutional UNet and a Swin transformer to form a hierarchical 3D computation structure, allowing for analyzing CMR images spatially and temporally with multiscale feature learning. A comparative study was conducted between SwinUNet and an existing deep-learning model, MyoMapNet, which only used temporal analysis for parametric mapping. The T1/T2 mapping performance was evaluated globally using mean absolute error (MAE) and structural similarity index measure (SSIM). The clinical T1/T2 indices for characterizing the left-ventricle myocardial walls were also calculated and evaluated using correlation and Bland-Altman analysis. Main results. We performed accelerated T1 mapping with <= 4 heartbeats and T2 mapping with 2 heartbeats in reference to the clinical standard, which required 11 heartbeats for T1 mapping and 3 heartbeats for T2 mapping. SwinUNet performed well in all the experiments (MAE < 50 ms, SSIM > 0.8, correlation > 0.75, and Bland-Altman agreement limits < 100 ms for T1 mapping; MAE < 1 ms, SSIM > 0.9, correlation > 0.95, and Bland-Altman agreement limits < 1.5 ms for T2 mapping). When the maximal acceleration was used (2 heartbeats), SwinUNet outperformed MyoMapNet and gave measurement accuracy similar to the clinical standard. Significance. SwinUNet offers an optimal solution to CMR parametric mapping for assessing myocardial diseases quantitatively in clinical cardiology.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping
    Perea Palazon, R. J.
    Ortiz Perez, J. T.
    Prat Gonzalez, S.
    de Caralt Robira, T. M.
    Cibeira Lopez, M. T.
    Sole Arques, M.
    RADIOLOGIA, 2016, 58 (03): : 164 - 177
  • [22] Parametric methods for characterizing myocardial tissue by magnetic resonance imaging (part 2): T2 mapping
    Perea Palazon, R. J.
    Sole Arques, M.
    Prat Gonzalez, S.
    de Caralt Robira, T. M.
    Cibeira Lopez, M. T.
    Ortiz Perez, J. T.
    RADIOLOGIA, 2015, 57 (06): : 471 - 479
  • [23] Evaluation of myocardial involvement in patients with connective tissue disorders: a multi-parametric cardiovascular magnetic resonance study
    Mayr, Agnes
    Kitterer, Daniel
    Latus, Joerg
    Steubing, Hannah
    Henes, Joerg
    Vecchio, Francesco
    Kaesemann, Philipp
    Patrascu, Alexandru
    Greiser, Andreas
    Groeninger, Stefan
    Braun, Niko
    Alscher, M. Dominik
    Sechtem, Udo
    Mahrholdt, Heiko
    Greulich, Simon
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2016, 18 : 1 - 13
  • [24] Evaluation of myocardial involvement in patients with connective tissue disorders: a multi-parametric cardiovascular magnetic resonance study
    Agnes Mayr
    Daniel Kitterer
    Joerg Latus
    Hannah Steubing
    Joerg Henes
    Francesco Vecchio
    Philipp Kaesemann
    Alexandru Patrascu
    Andreas Greiser
    Stefan Groeninger
    Niko Braun
    M. Dominik Alscher
    Udo Sechtem
    Heiko Mahrholdt
    Simon Greulich
    Journal of Cardiovascular Magnetic Resonance, 18
  • [25] Cardiac pseudotumor: Tissue characterization by cardiovascular magnetic resonance
    Moon, JCC
    Sheppard, MN
    Lloyd, G
    Patel, NR
    Pennell, DJ
    Mohiaddin, RH
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2003, 5 (03) : 497 - 500
  • [26] Feature tracking cardiovascular magnetic resonance in the differential diagnosis of myocardial hypertrophy
    Gonzalez, A. M. Maceira
    Tuset-Sanchis, L.
    Igual, B.
    Lopez, M. P.
    Monmeneu, J. V.
    Garcia, M. P.
    EUROPEAN HEART JOURNAL, 2016, 37 : 337 - 337
  • [27] Myocardial deformation in athletes measured with feature tracking cardiovascular magnetic resonance
    Silva, C.
    Marcos-Carrion, A.
    Garcia-Lopez, M. P.
    Lopez-Lereu, M. P.
    Monmeneu, J. V.
    Higueras, L.
    Ferreira, A. M.
    Maceira, A. M.
    EUROPEAN HEART JOURNAL, 2022, 43 : 271 - 271
  • [28] Cardiovascular Magnetic Resonance Myocardial Feature Tracking: Concepts and Clinical Applications
    Schuster, Andreas
    Hor, Kan N.
    Kowallick, Johannes T.
    Beerbaum, Philipp
    Kutty, Shelby
    CIRCULATION-CARDIOVASCULAR IMAGING, 2016, 9 (04)
  • [29] Cardiovascular Magnetic Resonance for Myocardial Inflammation Lake Louise Versus Mapping?
    Friedrich, Matthias G.
    CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (07)
  • [30] Parametric mapping by cardiovascular magnetic resonance imaging in sudden cardiac arrest survivors
    Gil, Katarzyna E.
    Truong, Vien T.
    Zareba, Karolina M.
    Varghese, Juliet
    Simonetti, Orlando P.
    Rajpal, Saurabh
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2023, 39 (08): : 1547 - 1555