MGU-GNN: Minimal Gated Unit based Graph Neural Network for Session-based Recommendation

被引:6
|
作者
Kumar, Chhotelal [1 ]
Abuzar, Md [1 ]
Kumar, Mukesh [1 ]
机构
[1] Natl Inst Technol, Dept Comp Sci & Engn, Patna 800005, Bihar, India
关键词
Session-based recommender system; Next item recommendation; Minimal gated unit; Graph neural network; Gated recurrent unit;
D O I
10.1007/s10489-023-04679-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Session-based recommender systems (SBRS) play a crucial role in predicting the next click of a user from anonymous session data on numerous online platforms such as e-commerce, music, etc. However, predicting the next click is a very challenging task within the session, as it contains a very little amount of contextual information. Most of the existing techniques consider a session like a sequence of items to make recommendations and ignore the complex transition between items. In order to get accurate item embeddings and capture the complex transitions of items, we have proposed a Minimal Gated Unit based Graph Neural Network (MGU-GNN) for the session-based recommendation (SBR) tasks. We have also integrated a soft-attention network and target-based interest-aware network module, called MGU-GNN-TAR. The target-based interest-aware network module adapts to varying users' interests in terms of the items to be targeted. The soft-attention network module adapts long-term priorities and current session interest for better prediction of the user's next item or action. This model provides precise item embedding by incorporating the complex item transitions. The proposed model uses a gated mechanism called the Minimal Gated Unit, which has a single gate, and due to this reason, the parameters have been reduced to 67% as compared to the GRU cell. A GRU cell is the most basic of all gated hidden units. To demonstrate the efficacy of the proposed models, comprehensive experiments on four most commonly used publicly available real-world datasets have been performed, and they show that the proposed models routinely beat baseline methods and state-of-the-art SBR techniques on all four datasets.
引用
下载
收藏
页码:23147 / 23165
页数:19
相关论文
共 50 条
  • [31] Modeling Price-Aware Session-Based Recommendation Based on Graph Neural Network
    Feng, Jian
    Wang, Yuwen
    Chen, Shaojian
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 397 - 413
  • [32] SR-HetGNN: session-based recommendation with heterogeneous graph neural network
    Chen, Jinpeng
    Li, Haiyang
    Zhang, Xudong
    Zhang, Fan
    Wang, Senzhang
    Wei, Kaimin
    Ji, Jiaqi
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (02) : 1111 - 1134
  • [33] High-order attentive graph neural network for session-based recommendation
    Sang, Sheng
    Liu, Nan
    Li, Wenxuan
    Zhang, Zhijun
    Qin, Qianqian
    Yuan, Weihua
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16975 - 16989
  • [34] GAG: Global Attributed Graph Neural Network for Streaming Session-based Recommendation
    Qiu, Ruihong
    Yin, Hongzhi
    Huang, Zi
    Chen, Tong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 669 - 678
  • [35] A Graph Positional Attention Network for Session-Based Recommendation
    Dong, Liyan
    Zhu, Guangtong
    Wang, Yuequn
    Li, Yongli
    Duan, Jiayao
    Sun, Minghui
    IEEE ACCESS, 2023, 11 : 7564 - 7573
  • [36] Session-Based Graph Attention POI Recommendation Network
    Zhang, Zhuohao
    Zhu, Jinghua
    Yue, Chenbo
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [37] Intention-aware denoising graph neural network for session-based recommendation
    Shanshan Hua
    Mingxin Gan
    Applied Intelligence, 2023, 53 : 23097 - 23112
  • [38] Enhanced Graph Neural Network for Session-Based Recommendation with Static and Dynamic Information
    Chao, Yongxin
    Zheng, Kai
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2024 WORKSHOPS, RAFDA AND IWTA, 2024, 14658 : 70 - 81
  • [39] SR-HetGNN: session-based recommendation with heterogeneous graph neural network
    Jinpeng Chen
    Haiyang Li
    Xudong Zhang
    Fan Zhang
    Senzhang Wang
    Kaimin Wei
    Jiaqi Ji
    Knowledge and Information Systems, 2024, 66 : 1111 - 1134
  • [40] High-order attentive graph neural network for session-based recommendation
    Sheng Sang
    Nan Liu
    Wenxuan Li
    Zhijun Zhang
    Qianqian Qin
    Weihua Yuan
    Applied Intelligence, 2022, 52 : 16975 - 16989