Priorities in gravitational waveforms for future space-borne detectors: vacuum accuracy or environment?

被引:23
|
作者
Zwick, Lorenz [1 ]
Capelo, Pedro R. [1 ]
Mayer, Lucio [1 ]
机构
[1] Univ Zurich, Inst Computat Sci, Ctr Theoret Astrophys & Cosmol, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
black hole physics; gravitational waves; methods: analytical; MASSIVE BLACK-HOLE; RELATIVISTIC CELESTIAL MECHANICS; GALACTIC NUCLEI; NUMERICAL-RELATIVITY; COMPACT-OBJECT; EVENT RATES; BINARIES; GAS; EVOLUTION; RADIATION;
D O I
10.1093/mnras/stad707
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In preparation for future space-borne gravitational-wave (GW) detectors, should the modelling effort focus on high-precision vacuum templates or on the astrophysical environment of the sources? We perform a systematic comparison of the phase contributions caused by (1) known environmental effects in both gaseous and stellar matter backgrounds, or (2) high-order post-Newtonian (PN) terms in the evolution of mHz GW sources during the inspiral stage of massive binaries. We use the accuracy of currently available analytical waveform models as a benchmark value, finding the following trends: the largest unmodelled phase contributions are likely environmental rather than PN for binaries lighter than similar to 10(7)/(1 + z)(2) M-circle dot, where z is the redshift. Binaries heavier than similar to 10(8)/(1 + z) M-circle dot do not require more accurate inspiral waveforms due to low signal-to-noise ratios (SNRs). For high-SNR sources, environmental phase contributions are relevant at low redshift, while high-order vacuum templates are required at z greater than or similar to 4. Led by these findings, we argue that including environmental effects in waveform models should be prioritized in order to maximize the science yield of future mHz detectors.
引用
收藏
页码:4645 / 4651
页数:7
相关论文
共 50 条
  • [22] Science prospects for space-borne gravitational-wave missions
    Yi-Ming Hu
    Jianwei Mei
    Jun Luo
    National Science Review, 2017, 4 (05) : 683 - 684
  • [23] Atomic source selection in space-borne gravitational wave detection
    Loriani, S.
    Schlippert, D.
    Schubert, C.
    Abend, S.
    Ahlers, H.
    Ertmer, W.
    Rudolph, J.
    Hogan, J. M.
    Kasevich, M. A.
    Rasel, E. M.
    Gaaloul, N.
    NEW JOURNAL OF PHYSICS, 2019, 21 (06):
  • [24] Science prospects for space-borne gravitational-wave missions
    Hu, Yi-Ming
    Mei, Jianwei
    Luo, Jun
    NATIONAL SCIENCE REVIEW, 2017, 4 (05) : 683 - 684
  • [25] Detecting an anisotropic gravitational wave background with a space-borne interferometer
    Giampieri, G
    Polnarev, AG
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1997, 291 (01) : 149 - 161
  • [26] Continuum background in space-borne gamma-ray detectors
    Evans, LG
    Trombka, JI
    Starr, R
    Boynton, WV
    Bailey, SH
    CONFERENCE ON THE HIGH ENERGY RADIATION BACKGROUND IN SPACE, 1998, : 101 - 103
  • [27] Solar proton event damage in space-borne Ge detectors
    Quarati, F.
    Brandenburg, S.
    Buis, E. -J.
    Dressler, P.
    Kraft, S.
    Lampert, M. -O.
    Ostendorf, R. W.
    Owens, Alan
    Peacock, A.
    Quirin, P.
    Quirion, D.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 610 (01): : 354 - 357
  • [28] Orbit environment analysis of the space-borne imaging spectrometer
    Guo, LH
    Zhang, X
    Cong, XJ
    OPTICAL DESIGN AND TESTING, 2002, 4927 : 485 - 490
  • [29] Dependency of Resolvable Gravitational Spatial Resolution on Space-Borne Observation Techniques
    Visser, P. N. A. M.
    Schrama, E. J. O.
    Sneeuw, N.
    Weigelt, M.
    GEODESY FOR PLANET EARTH: PROCEEDINGS OF THE 2009 IAG SYMPOSIUM, 2012, 136 : 373 - 379
  • [30] Time-delay interferometry for space-borne gravitational wave detection
    Wang, Pampan
    Zhao, Xinlei
    Wu, Zhangqi
    Yang, Zijiang
    Shao, Chenggang
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2025, 55 (03)