Quantum particles in a suddenly accelerating potential

被引:0
|
作者
Amore, Paolo [1 ]
Fernandez, Francisco M. [2 ]
Valdez, Jose Luis [3 ]
机构
[1] Univ Colima, Fac Ciencias, CUICBAS, Bernal Diaz Castillo 340, Colima, Colima, Mexico
[2] INIFTA, Div Quim Teor, Blvd 113 S-N,Sucursal 4,Casilla Correo 16, RA-1900 La Plata, Argentina
[3] Univ Colima, Fac Ciencias, Bernal Diaz Castillo 340, Colima, Colima, Mexico
关键词
D O I
10.1063/5.0100605
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the behavior of a quantum particle trapped in a confining potential in one dimension under multiple sudden changes of velocity and/or acceleration. We develop the appropriate formalism to deal with such situation and we use it to calculate the probability of transition for simple problems such as the particle in an infinite box and the simple harmonic oscillator. For the infinite box of length L under two and three sudden changes of velocity, where the initial and final velocity vanish, we find that the system undergoes quantum revivals for Delta t = tau(0) = 4 mL(2)/pi(h) over bar, regardless of other parameters (Delta t is the time elapsed between the first and last change of velocity). For the simple harmonic oscillator we find that the states obtained by suddenly changing (one change) the velocity and/or the acceleration of the potential, for a particle initially in an eigenstate of the static potential, are coherent states. For multiple changes of acceleration or velocity we find that the quantum expectation value of the Hamiltonian is remarkably close (possibly identical) to the corresponding classical expectation values. Finally, the probability of transition for a particle in an accelerating harmonic oscillator (no sudden changes) calculated with our formalism agrees with the formula derived long time ago by Ludwig [Z. Phys. 130(4), 468-475 (1951)], and recently modified by Dodonov [J. Russ. Laser Res. 42(3), 243-249 (2021)], but with a different expression for the dimensionless parameter gamma. Our probability agrees with the one of Dodonov for gamma << 1 but is not periodic in time (it decays monotonously), contrary to the result derived by Dodonov.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Quantum isothermal reversible process of particles in a box with a delta potential
    Park, Minho
    Yi, Su Do
    Baek, Seung Ki
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 66 (05) : 739 - 743
  • [22] Quantum isothermal reversible process of particles in a box with a delta potential
    Minho Park
    Su Do Yi
    Seung Ki Baek
    Journal of the Korean Physical Society, 2015, 66 : 739 - 743
  • [23] Accelerating quantum computer developments
    Garrelt J. N. Alberts
    M. Adriaan Rol
    Thorsten Last
    Benno W. Broer
    Cornelis C. Bultink
    Matthijs S. C. Rijlaarsdam
    Amber E. Van Hauwermeiren
    EPJ Quantum Technology, 2021, 8
  • [24] Quantum theory of an accelerating universe
    Gonzalez-Diaz, Pedro F.
    Robles-Perez, Salvador
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2008, 17 (08): : 1213 - 1228
  • [25] Accelerating quantum molecular simulations
    Tran, Huan
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (05): : 292 - 293
  • [26] Accelerating quantum molecular simulations
    Huan Tran
    Nature Computational Science, 2022, 2 : 292 - 293
  • [27] Accelerating Quantum Algorithms with Precomputation
    Huggins, William J.
    McClean, Jarrod R.
    QUANTUM, 2024, 8
  • [28] Accelerating quantum computer developments
    Alberts, Garrelt J. N.
    Rol, M. Adriaan
    Last, Thorsten
    Broer, Benno W.
    Bultink, Cornelis C.
    Rijlaarsdam, Matthijs S. C.
    Van Hauwermeiren, Amber E.
    EPJ QUANTUM TECHNOLOGY, 2021, 8 (01)
  • [29] ACCELERATING PARTICLES WITH TRANSVERSE CAVITY MODES
    PEREIRA, NR
    HUNTER, RO
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1981, 28 (03) : 3529 - 3531
  • [30] NEW IDEAS FOR ACCELERATING PARTICLES.
    Lawson, J.D.
    1600, (220):