A novel liquefied air energy storage system with solar energy and coupled Rankine cycle and seawater desalination

被引:19
|
作者
Shi, Xingping [1 ]
Song, Jintao [1 ]
He, Qing [1 ]
Liu, Yixue [1 ]
Fu, Hailun [1 ]
Cui, Shuangshuang [1 ]
机构
[1] North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China
关键词
Energy storage; Liquefied air energy storage; Solar energy; Rankine cycle; Seawater desalination; THERMODYNAMIC ANALYSIS; COMPRESSED-AIR;
D O I
10.1016/j.est.2023.106759
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To improve the round-trip efficiency of liquefied air energy storage (LAES) system by energy cascade utilization, a novel LAES system with solar energy and coupled Rankine cycle and seawater desalination is proposed. The thermodynamic model of the coupled system is established, and the technical advantages of the coupled system are investigated in four aspects: system energy efficiency, exergy efficiency, round-trip efficiency, and desali-nation. The results show that the highest system energy efficiency and exergy efficiency are 33.57 % and 44.34 %, respectively. When the system is coupled to Rankine cycle, the maximum system energy efficiency can be improved by 6.01 %, and the maximum system exergy efficiency can be improved by 9.24 %. The round-trip efficiency of the system can reach up to 132.20 %, which is 26.87 % higher than the LAES system with only solar collector panels. Furthermore, the system can produce up to 7079.51 kg of fresh water per hour and achieve a maximum water production ratio of 6.61. The coupling of solar energy, Rankine cycle and desalination can not only improve the efficiency of LAES, but also provide a new idea for the promotion and application of LAES.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Investigation and Design Seawater Desalination with Solar Energy
    Daneshmand, Saeed
    Mortaji, Ali
    Mortaji, Z.
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2012, 9 (03): : 770 - 773
  • [32] SOLMED: solar energy and polymers for seawater desalination
    Bandelier, Philippe
    d'Hurlaborde, Jean-Jacques
    Pelascini, Frederic
    Martins, Matthieu
    Gonda, Armel
    Alonso, Dominique
    Berlandis, Maryse
    Pigni, Federico
    DESALINATION AND WATER TREATMENT, 2015, 55 (12) : 3285 - 3294
  • [33] Levelised Cost of Storage (LCOS) analysis of liquid air energy storage system integrated with Organic Rankine Cycle
    Tafone, Alessio
    Ding, Yulong
    Li, Yongliang
    Xie, Chunping
    Romagnoli, Alessandro
    ENERGY, 2020, 198
  • [34] Thermo-economic and advanced exergy analysis of a novel liquid carbon dioxide energy storage system coupled with solar energy and liquefied natural gas
    Liu, Zhongyan
    Shao, Jiawei
    Guan, Hongwei
    Jin, Xu
    Zhang, Hao
    Li, Heng
    Su, Wei
    Sun, Dahan
    ENERGY, 2025, 315
  • [35] Simulation study of an air-gap membrane distillation system for seawater desalination using solar energy
    Sandid, Abdelfatah Marni
    Nehari, Taeib
    Nehari, Driss
    DESALINATION AND WATER TREATMENT, 2021, 229 : 40 - 51
  • [36] Solar energy powered high-recovery reverse osmosis for synchronous seawater desalination and energy storage
    Lai, Xiaotian
    Long, Rui
    Liu, Zhichun
    Liu, Wei
    ENERGY CONVERSION AND MANAGEMENT, 2021, 228
  • [37] Evaluation of operation safety of energy release process of liquefied air energy storage system
    Lu, Chang
    He, Qing
    Cui, Shuangshuang
    Shi, Xingping
    Du, Dongmei
    Liu, Wenyi
    ENERGY, 2021, 235
  • [38] THERMODYNAMIC ANALYSIS OF A NOVEL CRYOGENIC RANKINE CYCLE FOR WIND ENERGY STORAGE
    Zotter, G.
    Hermeling, W.
    Sanz, W.
    PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 3, 2012, : 41 - +
  • [39] Design and optimization of a novel wind-powered liquefied air energy storage system integrated with a supercritical carbon dioxide cycle
    Sadeghi, Shayan
    Javani, Nader
    Ghandehariun, Samane
    Ahmadi, Pouria
    ENERGY STORAGE, 2021, 3 (06)
  • [40] A novel renewable energy storage system based on reversible SOFC, hydrogen storage, Rankine cycle and absorption refrigeration system
    Singh, Uday Raj
    Kaushik, A. Sai
    Bhogilla, Satya Sekhar
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 51