Error analysis of modified Runge-Kutta-Nystrom methods for nonlinear second-order delay boundary value problems

被引:0
|
作者
Zhang, Chengjian [1 ,2 ]
Wang, Siyi [1 ]
Tang, Changyang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
关键词
Second-order boundary value; problems; Time-variable delay; Modified Runge-Kutta-Nystr?m; methods; Error analysis; DIFFERENTIAL-EQUATIONS; D-CONVERGENCE; STABILITY;
D O I
10.1016/j.aml.2023.108658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the numerical solutions of nonlinear second-order boundary value problems with time-variable delay. By adapting Runge-Kutta- Nystrom (RKN) methods and combining Lagrange interpolation, a class of modified RKN (MRKN) methods are suggested for solving the problems. Under some suitable conditions, MRKN methods are proved to be convergent of order min{p, q}, where p, q are the local orders of MRKN methods and Lagrange interpolation, respectively. Numerical experiments further confirm the computational effectiveness and accuracy of MRKN methods.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] On the numerical integration of orbital problems with high order Runge-Kutta-Nystrom methods
    González, AB
    Martín, P
    López, DJ
    [J]. APPLIED NUMERICAL MATHEMATICS, 2000, 35 (01) : 1 - 10
  • [12] Runge-Kutta-Nystrom methods of eighth order for addressing Linear Inhomogeneous problems
    Kovalnogov, V. N.
    Fedorov, R. V.
    Karpukhina, M. T.
    Kornilova, M. I.
    Simos, T. E.
    Tsitouras, Ch.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 419
  • [13] Continuous Runge-Kutta-Nystrom methods for initial value problems with periodic solutions
    Papageorgiou, G
    Famelis, IT
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (8-9) : 1165 - 1176
  • [14] Structure-preserving stochastic Runge-Kutta-Nystrom methods for nonlinear second-order stochastic differential equations with multiplicative noise
    Ma, Qiang
    Song, Yuanwei
    Xiao, Wei
    Qin, Wendi
    Ding, Xiaohua
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019,
  • [15] INTERPOLATING RUNGE-KUTTA-NYSTROM METHODS OF HIGH-ORDER
    TSITOURAS, C
    PAPAGEORGIOU, G
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 47 (3-4) : 209 - 217
  • [16] An alternative approach for order conditions of Runge-Kutta-Nystrom methods
    Sun, Xue
    Liu, Zhongli
    Tian, Hongjiong
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (05)
  • [17] Symbolic derivation of order conditions for Runge-Kutta-Nystrom methods
    Vlachos, D. S.
    Simos, T. E.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 578 - +
  • [18] Runge-Kutta-Nystrom symplectic splitting methods of order 8
    Blanes, S.
    Casas, F.
    Escorihuela-Tomas, A.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2022, 182 : 14 - 27
  • [19] HIGH-ORDER SYMPLECTIC RUNGE-KUTTA-NYSTROM METHODS
    CALVO, MP
    SANZSERNA, JM
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (05): : 1237 - 1252
  • [20] DIAGONALLY IMPLICIT RUNGE-KUTTA-NYSTROM METHODS FOR OSCILLATORY PROBLEMS
    VANDERHOUWEN, PJ
    SOMMEIJER, BP
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (02) : 414 - 429