A survey on learning-based low-light image and video enhancement

被引:3
|
作者
Ye, Jing [1 ]
Qiu, Changzhen [1 ]
Zhang, Zhiyong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Commun Engn, Shenzhen 518107, Guangdong, Peoples R China
关键词
Low-light enhancement; Image; Video; Experimental evaluation; Deep learning; DYNAMIC HISTOGRAM EQUALIZATION; CONTRAST ENHANCEMENT; QUALITY ASSESSMENT; NETWORK; ILLUMINATION; FRAMEWORK; ALGORITHM;
D O I
10.1016/j.displa.2023.102614
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Low-light enhancement (LLE) is a fundamental technique for improving the visual perception and interpretability of images and videos that suffer from low light degradation. In recent years, learning-based low-light image and video enhancement has made significant strides. Low-light image enhancement (LLIE) mainly focuses on enhancing images in a spatial-varying manner, while low-light video enhancement (LLVE) emphasizes exploiting temporal information in videos. In this survey, we present a comprehensive review of the research progress of LLE, categorizing LLIE and LLVE solutions according to their task attributes for the first time. We also provide a systematic analysis and discussion of technical details from various aspects. To deepen researchers' understanding of LLE technology development and provide performance benchmarks, we extensively evaluate various LLIE and LLVE models using datasets for low-light image, video, and high-level visual applications. Based on the experimental analysis, we summarize the current limitations and challenges of LLE. Additionally, our study offers insights into potential future research directions for LLE.
引用
下载
收藏
页数:23
相关论文
共 50 条
  • [31] Low-Light Image Enhancement Based on Transmission Normalization
    Yang A.
    Song C.
    Zhang L.
    Bai H.
    Bu L.
    Yang, Aiping (yangaiping@tju.edu.cn), 2017, Tianjin University (50): : 997 - 1003
  • [32] LEARNING TO FUSE HETEROGENEOUS FEATURES FOR LOW-LIGHT IMAGE ENHANCEMENT
    Tang, Zhenyu
    Ma, Long
    Shang, Xiaoke
    Fan, Xin
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2100 - 2104
  • [33] Multi-Feature Learning for Low-Light Image Enhancement
    Huang, Wei
    Zhu, Yifeng
    Wang, Rui
    Lu, Xiaofeng
    TWELFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2020), 2020, 11519
  • [34] LightingNet: An Integrated Learning Method for Low-Light Image Enhancement
    Yang, Shaoliang
    Zhou, Dongming
    Cao, Jinde
    Guo, Yanbu
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2023, 9 : 29 - 42
  • [35] Degrade Is Upgrade: Learning Degradation for Low-Light Image Enhancement
    Jiang, Kui
    Wang, Zhongyuan
    Wang, Zheng
    Chen, Chen
    Yi, Peng
    Lu, Tao
    Lin, Chia-Wen
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1078 - 1086
  • [36] Low-light image enhancement based on normal-light image degradation
    Zhao, Bai
    Gong, Xiaolin
    Wang, Jian
    Zhao, Lingchao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) : 1409 - 1416
  • [37] Low-light image enhancement based on normal-light image degradation
    Bai Zhao
    Xiaolin Gong
    Jian Wang
    Lingchao Zhao
    Signal, Image and Video Processing, 2022, 16 : 1409 - 1416
  • [38] Low-Light Stereo Image Enhancement
    Huang, Jie
    Fu, Xueyang
    Xiao, Zeyu
    Zhao, Feng
    Xiong, Zhiwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2978 - 2992
  • [39] Low-Light Hyperspectral Image Enhancement
    Li, Xuelong
    Li, Guanlin
    Zhao, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [40] Decoupled Low-Light Image Enhancement
    Hao, Shijie
    Han, Xu
    Guo, Yanrong
    Wang, Meng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)