Semi-Asynchronous Model Design for Federated Learning in Mobile Edge Networks

被引:1
|
作者
Zhang, Jinfeng [1 ]
Liu, Wei [1 ]
He, Yejun [1 ]
He, Zhou [2 ]
Guizani, Mohsen [3 ]
机构
[1] Shenzhen Univ, Guangdong Engn Res Ctr Base Stn Antennas, State Key Lab Radio Frequency Heterogeneous Integr, Coll Elect & Informat Engn,Shenzhen Key Lab Antenn, Shenzhen, Peoples R China
[2] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[3] Mohamed Bin Zayed Univ Artificial Intelligence MBZ, Abu Dhabi 51133, U Arab Emirates
基金
中国国家自然科学基金;
关键词
Federated learning; mobile edge networks; deep deterministic policy gradient; semi-asynchronous update model; energy efficiency;
D O I
10.1109/TVT.2023.3298787
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated learning (FL) is a distributed machine learning (ML). Distributed clients train locally and exclusively need to upload the model parameters to learn the global model collaboratively under the coordination of the aggregation server. Although the privacy of the clients is protected, which requires multiple rounds of data upload between the clients and the server to ensure the accuracy of the global model. Inevitably, this results in latency and energy consumption issues due to limited communication resources. Therefore, mobile edge computing (MEC) has been proposed to solve communication delays and energy consumption in federated learning. In this paper, we first analyze how to select the gradient values that help the global model converge quickly and establish theoretical analysis about the relationship between the convergence rate and the gradient direction. To efficiently reduce the energy consumption of clients during training, on the premise of ensuring the local training accuracy and the convergence rate of the global model, we adopt the deep deterministic policy gradient (DDPG) algorithm, which adaptively allocates resources according to different clients' requests to minimize the energy consumption. To improve flexibility and scalability, we propose a new the semi-asynchronous federated update model, which allows clients to aggregate asynchronously on the server, and accelerates the convergence rate of the global model. Empirical results show that the proposed Algorithm $\mathbf {1}$ not only accelerates the convergence speed of the global model, but also reduces the size of parameters that need to be uploaded. Besides, the proposed Algorithm $\mathbf {2}$ reduces the time difference caused by user heterogeneity. Eventually, the semi-asynchronous update model is better than the synchronous update model in communication time.
引用
收藏
页码:16280 / 16292
页数:13
相关论文
共 50 条
  • [21] Semi-Synchronous Personalized Federated Learning Over Mobile Edge Networks
    You, Chaoqun
    Feng, Daquan
    Guo, Kun
    Yang, Howard H.
    Feng, Chenyuan
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (04) : 2262 - 2277
  • [22] Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach
    Chen, Shuai
    Wang, Xiumin
    Zhou, Pan
    Wu, Weiwei
    Lin, Weiwei
    Wang, Zhenyu
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (05): : 1113 - 1124
  • [23] POSTER: A Semi-asynchronous Federated Intrusion Detection Framework for Power Systems
    Husnoo, Muhammad Akbar
    Anwar, Adnan
    Reda, Haftu Tasew
    Hosseinzadeh, Nasser
    PROCEEDINGS OF THE 2023 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, ASIA CCS 2023, 2023, : 1019 - 1021
  • [24] HFSA: A Semi-Asynchronous Hierarchical Federated Recommendation System in Smart City
    Li, Youhuizi
    Yu, Haitao
    Zeng, Yan
    Pan, Qianqian
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (21) : 18808 - 18820
  • [25] Asynchronous Federated Learning via Blockchain in Edge Computing Networks
    Huang X.
    Deng X.
    Chen Q.
    Zhang J.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (01): : 195 - 203
  • [26] Asynchronous Semi-Decentralized Federated Edge Learning for Heterogeneous Clients
    Sun, Yuchang
    Shao, Jiawei
    Mao, Yuyi
    Zhang, Jun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5196 - 5201
  • [27] SEMI-ASYNCHRONOUS ROUTING FOR LARGE SCALE HIERARCHICAL NETWORKS
    Liao, Wei-Cheng
    Hong, Mingyi
    Farmanbar, Hamid
    Luo, Zhi-Quan
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 2894 - 2898
  • [28] Federated Learning in Mobile Edge Networks: A Comprehensive Survey
    Lim, Wei Yang Bryan
    Nguyen Cong Luong
    Dinh Thai Hoang
    Jiao, Yutao
    Liang, Ying-Chang
    Yang, Qiang
    Niyato, Dusit
    Miao, Chunyan
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (03): : 2031 - 2063
  • [29] Distributionally Robust Federated Learning for Mobile Edge Networks
    Le, Long Tan
    Nguyen, Tung-Anh
    Nguyen, Tuan-Dung
    Tran, Nguyen H.
    Truong, Nguyen Binh
    Vo, Phuong L.
    Hung, Bui Thanh
    Le, Tuan Anh
    MOBILE NETWORKS & APPLICATIONS, 2024, 29 (1): : 262 - 272
  • [30] Federated learning framework for mobile edge computing networks
    Fantacci, Romano
    Picano, Benedetta
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2020, 5 (01) : 15 - 21