Attentive Multimodal Learning on Sensor Data using Hyperdimensional Computing

被引:2
|
作者
Zhao, Quanling [1 ]
Yu, Xiaofan [1 ]
Rosing, Tajana [1 ]
机构
[1] Univ Calif San Diego, Comp Sci & Engn, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Hyperdimensional Computing; Multimodal Learning;
D O I
10.1145/3583120.3589824
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the continuing advancement of ubiquitous computing and various sensor technologies, we are observing a massive population of multimodal sensors at the edge which posts significant challenges in fusing the data. In this poster we propose MultimodalHD, a novel Hyperdimensional Computing (HD)-based design for learning from multimodal data on edge devices. We use HD to encode raw sensory data to high-dimensional low-precision hypervectors, after which the multimodal hypervectors are fed to an attentive fusion module for learning richer representations via inter-modality attention. Our experiments on multimodal time-series datasets show MultimodalHD to be highly efficient. MultimodalHD achieves 17x and 14x speedup in training time per epoch on HAR and MHEALTH datasets when comparing with state-of-the-art RNNs, while maintaining comparable accuracy performance.
引用
收藏
页码:312 / 313
页数:2
相关论文
共 50 条
  • [21] RelHD: A Graph-based Learning on FeFET with Hyperdimensional Computing
    Kang, Jaeyoung
    Zhou, Minxuan
    Bhansali, Abhinav
    Xu, Weihong
    Thomas, Anthony
    Rosing, Tajana
    [J]. 2022 IEEE 40TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2022), 2022, : 553 - 560
  • [22] EnHDC: Ensemble Learning for Brain-Inspired Hyperdimensional Computing
    Wang, Ruixuan
    Ma, Dongning
    Jiao, Xun
    [J]. IEEE EMBEDDED SYSTEMS LETTERS, 2023, 15 (01) : 37 - 40
  • [23] EventHD: Robust and efficient hyperdimensional learning with neuromorphic sensor
    Zou, Zhuowen
    Alimohamadi, Haleh
    Kim, Yeseong
    Najafi, M. Hassan
    Srinivasa, Narayan
    Imani, Mohsen
    [J]. FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [24] Understanding Hyperdimensional Computing for Parallel Single-Pass Learning
    Yu, Tao
    Zhang, Yichi
    Zhang, Zhiru
    De Sa, Christopher
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [25] On Hyperdimensional Computing-based Federated Learning: A Case Study
    Zhang, Sizhe
    Ma, Dongning
    Bian, Song
    Yang, Lei
    Jiao, Xun
    [J]. 2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [26] An encoding framework for binarized images using hyperdimensional computing
    Smets, Laura
    Van Leekwijck, Werner
    Tsang, Ing Jyh
    Latre, Steven
    [J]. FRONTIERS IN BIG DATA, 2024, 7
  • [27] FSL-HD: Accelerating Few-Shot Learning on ReRAM using Hyperdimensional Computing
    Xu, Weihong
    Kang, Jaeyoung
    Rosing, Tajana
    [J]. 2023 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2023,
  • [28] Hyperdimensional computing: A fast, robust, and interpretable paradigm for biological data
    Stock, Michiel
    Van Criekinge, Wim
    Boeckaerts, Dimitri
    Taelman, Steff
    Van Haeverbeke, Maxime
    Dewulf, Pieter
    De Baets, Bernard
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)
  • [29] CompHD: Efficient Hyperdimensional Computing Using Model Compression
    Morris, Justin
    Imani, Mohsen
    Bosch, Samuel
    Thomas, Anthony
    Shu, Helen
    Rosing, Tajana
    [J]. 2019 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED), 2019,
  • [30] Efficient Human Activity Recognition Using Hyperdimensional Computing
    Kim, Yeseong
    Imani, Mohsen
    Rosing, Tajana S.
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON THE INTERNET OF THINGS (IOT'18), 2018,