Attentive Multimodal Learning on Sensor Data using Hyperdimensional Computing

被引:2
|
作者
Zhao, Quanling [1 ]
Yu, Xiaofan [1 ]
Rosing, Tajana [1 ]
机构
[1] Univ Calif San Diego, Comp Sci & Engn, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Hyperdimensional Computing; Multimodal Learning;
D O I
10.1145/3583120.3589824
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the continuing advancement of ubiquitous computing and various sensor technologies, we are observing a massive population of multimodal sensors at the edge which posts significant challenges in fusing the data. In this poster we propose MultimodalHD, a novel Hyperdimensional Computing (HD)-based design for learning from multimodal data on edge devices. We use HD to encode raw sensory data to high-dimensional low-precision hypervectors, after which the multimodal hypervectors are fed to an attentive fusion module for learning richer representations via inter-modality attention. Our experiments on multimodal time-series datasets show MultimodalHD to be highly efficient. MultimodalHD achieves 17x and 14x speedup in training time per epoch on HAR and MHEALTH datasets when comparing with state-of-the-art RNNs, while maintaining comparable accuracy performance.
引用
收藏
页码:312 / 313
页数:2
相关论文
共 50 条
  • [1] Efficient Machine Learning on Encrypted Data using Hyperdimensional Computing
    Nam, Yujin
    Zhou, Minxuan
    Gupta, Saransh
    De Micheli, Gabrielle
    Cammarota, Rosario
    Wilkerson, Chris
    Micciancio, Daniele
    Rosing, Tajana
    [J]. 2023 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN, ISLPED, 2023,
  • [2] Predicting financial distress using multimodal data: An attentive and regularized deep learning method
    Che, Wanliu
    Wang, Zhao
    Jiang, Cuiqing
    Abedin, Mohammad Zoynul
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (04)
  • [3] Symbolic Representation and Learning With Hyperdimensional Computing
    Mitrokhin, Anton
    Sutor, Peter
    Summers-Stay, Douglas
    Fermueller, Cornelia
    Aloimonos, Yiannis
    [J]. FRONTIERS IN ROBOTICS AND AI, 2020, 7
  • [4] A Binary Learning Framework for Hyperdimensional Computing
    Imani, Mohsen
    Messerly, John
    Wu, Fan
    Pi, Wang
    Rosing, Tajana
    [J]. 2019 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2019, : 126 - 131
  • [5] SemiHD: Semi-Supervised Learning Using Hyperdimensional Computing
    Imani, Mohsen
    Bosch, Samuel
    Javaheripi, Mojan
    Rouhani, Bita
    Wu, Xinyu
    Koushanfar, Farinaz
    Rosing, Tajana
    [J]. 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2019,
  • [6] HyperFeel: An Efficient Federated Learning Framework Using Hyperdimensional Computing
    Li, Haomin
    Liu, Fangxin
    Chen, Yichi
    Jiang, Li
    [J]. 29TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC 2024, 2024, : 716 - 721
  • [7] HDFL: Private and Robust Federated Learning using Hyperdimensional Computing
    Kasyap, Harsh
    Tripathy, Somanath
    Conti, Mauro
    [J]. 2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 214 - 221
  • [8] FedHD: Federated Learning with Hyperdimensional Computing
    Zhao, Quanling
    Lee, Kai
    Liu, Jeffrey
    Huzaifa, Muhammad
    Yu, Xiaofan
    Rosing, Tajana
    [J]. PROCEEDINGS OF THE 2022 THE 28TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING, ACM MOBICOM 2022, 2022, : 791 - 793
  • [9] GENERIC: Highly Efficient Learning Engine on Edge using Hyperdimensional Computing
    Khaleghi, Behnam
    Kang, Jaeyoung
    Xu, Hanyang
    Morris, Justin
    Rosing, Tajana
    [J]. PROCEEDINGS OF THE 59TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC 2022, 2022, : 1117 - 1122
  • [10] Flexible and Personalized Learning for Wearable Health Applications using HyperDimensional Computing
    Shahhosseini, Sina
    Ni, Yang
    Naeini, Emad Kasaeyan
    Imani, Mohsen
    Rahmani, Amir M.
    Dutt, Nikil
    [J]. PROCEEDINGS OF THE 32ND GREAT LAKES SYMPOSIUM ON VLSI 2022, GLSVLSI 2022, 2022, : 357 - 360