Multistage Scene-Level Constraints for Large-Scale Point Cloud Weakly Supervised Semantic Segmentation

被引:6
|
作者
Su, Yanfei [1 ]
Cheng, Ming [1 ]
Yuan, Zhimin [1 ]
Liu, Weiquan [1 ]
Zeng, Wankang [1 ]
Wang, Cheng [1 ]
机构
[1] Xiamen Univ, Sch Informat, Fujian Key Lab Sensing & Comp Smart Cities, Xiamen 361005, Peoples R China
基金
中国博士后科学基金;
关键词
Multistage scene-level constraints (MSCs); point cloud; uncertainty-guided adaptive reweighting; weakly supervised semantic segmentation;
D O I
10.1109/TGRS.2023.3326743
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Compared to fully supervised 3-D large-scale point cloud segmentation methods, which necessitate extensive manual point-wise annotations, weakly supervised segmentation has emerged as a popular approach for significantly reducing labeling costs while maintaining effectiveness. However, the existing methods have exhibited inferior segmentation performance and unsatisfactory generalization capabilities in some scenarios with unique structures (e.g., building facades). In this article, we propose an effective and generalized weakly supervised semantic segmentation framework, called multistage scene-level constraints (MSCs), to solve the above problem. To address the issue regarding inadequate labeled data, we use pseudo-labels for unlabeled data and propose an uncertainty-guided adaptive reweighting strategy to reduce the negative impact of erroneous pseudo-labeled data on the model learning process. To address the class imbalance issue, we employ MSCs (i.e., encoder, decoder, and classifier stages) to treat each class equally and improve perception ability of the model for each class. Evaluations conducted on multiple large-scale point cloud datasets collected in different scenarios, including building facades, indoor scenes, outdoor scenes, and UAV scenes, show that our MSC achieves a large gain over the existing weakly supervised methods and even surpasses some fully supervised methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] EXPLORING LABEL INITIALIZATION FOR WEAKLY SUPERVISED ALS POINT CLOUD SEMANTIC SEGMENTATION
    Wang, Puzuo
    Yao, Wei
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 5-2 : 151 - 158
  • [32] Weakly supervised point cloud semantic segmentation with the fusion of heterogeneous network features
    Niu, Yingchun
    Yin, Jianqin
    IMAGE AND VISION COMPUTING, 2024, 142
  • [33] Weakly-Supervised Point Cloud Semantic Segmentation Based on Dilated Region
    Zhang, Lujian
    Bi, Yuanwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 20
  • [34] Point and voxel cross perception with lightweight cosformer for large-scale point cloud semantic segmentation
    Zhang, Shuai
    Wang, Biao
    Chen, Yiping
    Zhang, Shuhang
    Zhang, Wuming
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 131
  • [35] Spatial Structure Constraints for Weakly Supervised Semantic Segmentation
    Chen, Tao
    Yao, Yazhou
    Huang, Xingguo
    Li, Zechao
    Nie, Liqiang
    Tang, Jinhui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1136 - 1148
  • [36] DCNet: Large-Scale Point Cloud Semantic Segmentation With Discriminative and Efficient Feature Aggregation
    Yin, Fukun
    Huang, Zilong
    Chen, Tao
    Luo, Guozhong
    Yu, Gang
    Fu, Bin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 4083 - 4095
  • [37] Retrieval-and-alignment based large-scale indoor point cloud semantic segmentation
    Zongyi Xu
    Xiaoshui Huang
    Bo Yuan
    Yangfu Wang
    Qianni Zhang
    Weisheng Li
    Xinbo Gao
    Science China Information Sciences, 2024, 67
  • [38] PointNAT: Large-Scale Point Cloud Semantic Segmentation via Neighbor Aggregation With Transformer
    Zeng, Ziyin
    Qiu, Huan
    Zhou, Jian
    Dong, Zhen
    Xiao, Jinsheng
    Li, Bijun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [39] Retrieval-and-alignment based large-scale indoor point cloud semantic segmentation
    Zongyi XU
    Xiaoshui HUANG
    Bo YUAN
    Yangfu WANG
    Qianni ZHANG
    Weisheng LI
    Xinbo GAO
    Science China(Information Sciences), 2024, 67 (04) : 164 - 180
  • [40] Retrieval-and-alignment based large-scale indoor point cloud semantic segmentation
    Xu, Zongyi
    Huang, Xiaoshui
    Yuan, Bo
    Wang, Yangfu
    Zhang, Qianni
    Li, Weisheng
    Gao, Xinbo
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (04)