Equivalent Statements of Two Multidimensional Hilbert-Type Integral Inequalities with Parameters

被引:1
|
作者
Li, Yiyuan [1 ]
Zhong, Yanru [2 ]
Yang, Bicheng [3 ]
机构
[1] Guilin Univ Elect Technol, Sch Art & Design, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
[3] Guangdong Univ Educ, Sch Math, Guangzhou 510303, Peoples R China
基金
中国国家自然科学基金;
关键词
transfer formula; multidimensional Hilbert-type inequality; gamma function; best possible constant factor;
D O I
10.3390/axioms12100956
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of the weight functions, the idea of introduced parameters and the transfer formulas, two multidimensional Hilbert-type integral inequalities with the general nonhomogeneous kernel as H(||x||alpha lambda 1||y||beta lambda 2) (lambda 1,lambda 2 not equal 0) are given, which are some extensions of the Hilbert-type integral inequalities in the two-dimensional case. Some equivalent conditions of the best value and several parameters related to the new inequalities are provided. Two corollaries regarding the kernel, represented as k lambda(||x||alpha lambda 1,||y||beta lambda 2)(lambda 1,lambda 2 not equal 0), are given, and a few new inequalities for the particular parameters are obtained.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Equivalent conditions of a multiple Hilbert-Type integral inequality with the nonhomogeneous kernel
    Michael Th. Rassias
    Bicheng Yang
    Andrei Raigorodskii
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [42] An extension of a multidimensional Hilbert-type inequality
    Zhong, Jianhua
    Yang, Bicheng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [43] A Multidimensional Discrete Hilbert-Type Inequality
    Yang, Bicheng
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2014, 5 (01): : 80 - 88
  • [44] An extension of a multidimensional Hilbert-type inequality
    Jianhua Zhong
    Bicheng Yang
    Journal of Inequalities and Applications, 2017
  • [45] On a strengthened multidimensional Hilbert-type inequality
    Krnic, Mario
    MATHEMATICA SLOVACA, 2014, 64 (05) : 1165 - 1182
  • [46] ON MORE ACCURATE REVERSE MULTIDIMENSIONAL HALF-DISCRETE HILBERT-TYPE INEQUALITIES
    Yang, Bicheng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02): : 589 - 605
  • [47] A MULTIDIMENSIONAL DISCRETE HILBERT-TYPE INEQUALITY
    Yang, Bicheng
    Chen, Qiang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (02): : 267 - 277
  • [48] A survey on the study of Hilbert-type inequalities
    Chen, Qiang
    Yang, Bicheng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [49] A survey on the study of Hilbert-type inequalities
    Qiang Chen
    Bicheng Yang
    Journal of Inequalities and Applications, 2015
  • [50] Hilbert-type inequalities in homogeneous cones
    Garrigos, Gustavo
    Nana, Cyrille
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (04) : 815 - 838