Factors Controlling Complex Morphologies of Isomorphous Metal-Organic Frameworks

被引:1
|
作者
Singh, Vivek [1 ]
Feldman, Yishay [2 ]
Leitus, Gregory [2 ]
Brumfeld, Vlad [2 ]
Shimon, Linda J. W. [2 ]
Lahav, Michal [1 ]
van Der Boom, Milko E. E. [1 ]
机构
[1] Weizmann Inst Sci, Dept Mol Chem & Mat Sci, IL-7610001 Rehovot, Israel
[2] Weizmann Inst Sci, Dept Chem Res Support, IL-7610001 Rehovot, Israel
基金
以色列科学基金会;
关键词
growth mechanism; homochiral; microCT; MOFs; single crystallinity; HYBRID MATERIALS; SINGLE-CRYSTAL; GROWTH; CRYSTALLIZATION; ASSEMBLIES; PARTICLES; CHIRALITY; PYRIDINE; LIGAND;
D O I
10.1002/chem.202301825
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate here how nitrate salts of bivalent copper, nickel, cobalt, and manganese, along with an achiral organic ligand, assemble into various structures such as symmetrical double-decker flowers, smooth elongated hexagonal bipyramids, and hexagonal prisms. Large morphological changes occur in these structures because of different metal cations, although they maintain isomorphous hexagonal crystallographic structures. Metal cations with stronger coordination to ligands (Cu and Ni) tend to form uniform crystals with unusual shapes, whereas weaker coordinating metal cations (Mn and Co) produce crystals with more regular hexagonal morphologies. The unusual flower-like crystals formed with copper nitrate have two pairs of six symmetrical petals with hexagonal convex centers. The texture of the petals indicates dendritic growth. Two different types of morphologies were formed by using different copper nitrate-to-ligand ratios. An excess of the metal salt results in uniform and hexagonal crystals having a narrow size distribution, whereas the use of an excess of ligand results in double-decker morphologies. Mechanistically, an intermediate structure was observed with slightly concave facets and a domed center. Such structures most likely play a key role in the formation of double-decker crystals that can be formed by fusion processes. The coordination chemistry results in isostructural chiral frameworks consisting of two types of continuous helical channels. Four pyridine units from four separate ligands are coordinated to the metal center in a plane having a chiral (propeller-type) arrangement. The individual double-decker flower crystals are homochiral and a batch consists of crystals having both handedness.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Controlling flexibility of metal-organic frameworks
    Zhang, Jie-Peng
    Zhou, Hao-Long
    Zhou, Dong-Dong
    Liao, Pei-Qin
    Chen, Xiao-Ming
    [J]. NATIONAL SCIENCE REVIEW, 2018, 5 (06) : 907 - 919
  • [2] Understanding and controlling the nucleation and growth of metal-organic frameworks
    Carpenter, Brooke P.
    Talosig, A. Rain
    Rose, Ben
    Di Palma, Giuseppe
    Patterson, Joseph P.
    [J]. CHEMICAL SOCIETY REVIEWS, 2023, 52 (20) : 6918 - 6937
  • [3] Understanding and Controlling the Dielectric Response of Metal-Organic Frameworks
    Ryder, Matthew R.
    Dona, Lorenzo
    Vitillo, Jenny G.
    Civalleri, Bartolomeo
    [J]. CHEMPLUSCHEM, 2018, 83 (04): : 308 - 316
  • [4] Controlling Thermal Expansion: A Metal-Organic Frameworks Route
    Balestra, Salvador R. G.
    Bueno-Perez, Rocio
    Hamad, Said
    Dubbeldam, David
    Ruiz-Salvador, A. Rabdel
    Calero, Sofia
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (22) : 8296 - 8304
  • [5] Two-dimensional nanosheets of metal-organic frameworks with tailorable morphologies
    Luo, Y. -H.
    Ma, S. -H.
    Dong, H.
    Zou, Y. -C.
    Xu, K. -X.
    Su, S.
    Jin, X. -W.
    Zhang, L.
    Fang, W. -X.
    [J]. MATERIALS TODAY CHEMISTRY, 2021, 22
  • [6] Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks
    Prakash, M. Jaya
    Lah, Myoung Soo
    [J]. CHEMICAL COMMUNICATIONS, 2009, (23) : 3326 - 3341
  • [7] Controlling embedment and surface chemistry of nanoclusters in metal-organic frameworks
    Coupry, D. E.
    Butson, J.
    Petkov, P. S.
    Saunders, M.
    O'Donnell, K.
    Kim, H.
    Buckley, C.
    Addicoat, M.
    Heine, T.
    Szilagyi, P. A.
    [J]. CHEMICAL COMMUNICATIONS, 2016, 52 (29) : 5175 - 5178
  • [8] Controlling transport in triphenylene-based metal-organic frameworks
    Skorupskii, Grigorii
    Trump, Benjamin A.
    Kasel, Thomas W.
    Brown, Craig M.
    Hendon, Christopher H.
    Dinca, Mircea
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2019, 75 : A149 - A149
  • [9] Isomorphous Lanthanide Metal-Organic Frameworks Based on Biphenyldicarboxylate: Synthesis, Structure, and Photoluminescent Properties
    Chatenever, Ana R. K.
    Warne, Louis R.
    Matsuoka, Joe E.
    Wang, Stanley J.
    Reinheimer, Eric W.
    LeMagueres, Pierre
    Fei, Honghan
    Song, Xueling
    Oliver, Scott R. J.
    [J]. CRYSTAL GROWTH & DESIGN, 2019, 19 (08) : 4854 - 4859
  • [10] Metal-organic frameworks
    James, SL
    [J]. CHEMICAL SOCIETY REVIEWS, 2003, 32 (05) : 276 - 288