Graph states and the variety of principal minors

被引:0
|
作者
Galgano, Vincenzo [1 ]
Holweck, Frederic [2 ,3 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Trento, Italy
[2] Univ Bourgogne Franche Comte, Lab Interdisciplinaire Carnot de Bourgogne, ICB UTBM, UMR6303 CNRS, F-90010 Belfort, France
[3] Auburn Univ, Dept Math & Stat, Auburn, AL USA
关键词
Graph states; Stabilizer states; Pauli group; Local Clifford group; Local symplectic group; Lagrangian Grassmannian; Symmetric principal minors;
D O I
10.1007/s10231-023-01361-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Quantum Information theory, graph states are quantum states defined by graphs. In this work we exhibit a correspondence between orbits of graph states and orbits in the variety of binary symmetric principal minors, under the action of SL(2, F-2)(xn) (sic) G(n). First we study the orbits of maximal abelian subgroups of the n-fold Pauli group under the action of C-n(loc) (sic) G(n), where C-n(loc) is the n-fold local Clifford group, and we show that this action corresponds to the natural action of SL(2, F-2)(xn) (sic) G(n) on the variety Z(n) subset of P(F-2(n2)) of principal minors of binary symmetric n x n matrices: the crucial step is in translating the action of SL(2, F-2)(xn) into an action of the local symplectic group Sp(2n)(loc)(F-2). We conclude by showing how the former action restricts onto stabilizer groups, stabilizer states and graph states.
引用
收藏
页码:273 / 295
页数:23
相关论文
共 50 条