Modifying PTAA/Perovskite Interface via 4-Butanediol Ammonium Bromide for Efficient and Stable Inverted Perovskite Solar Cells

被引:13
|
作者
Li, Yang [1 ,2 ]
Zhang, Lixin [1 ,2 ]
Xia, Junming [3 ]
Liu, Tanghao [4 ]
Wang, Kaiyang [5 ]
机构
[1] Shihezi Univ, Bingtuan Energy Dev Inst, 280 Beisi Rd, Shihezi City 832000, Peoples R China
[2] Shihezi Univ, Key Lab Adv Energy Storage Mat & Technol, Shihezi City 832000, Peoples R China
[3] Univ Macau, Inst Appl Phys & Mat Engn, Joint Key Lab, Minist Educ, Macau 999078, Peoples R China
[4] Hong Kong Baptist Univ, Dept Phys, 224 Waterloo Rd, Hong Kong 999077, Peoples R China
[5] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Micronano Optoelect Informat Syst, Shenzhen 518055, Peoples R China
关键词
interfaces; inverted perovskite solar cells; PTAA; stability; wettability; STABILITY;
D O I
10.1002/smll.202208243
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inverted perovskite solar cells (IPSCs) have witnessed an impressive development in recent years. However, their efficiency is still significantly behind theoretical limits, and device instabilities hinder their commercialization. Two main obstacles to further enhancing their performance via one-step deposition are: 1) the unsatisfactory film quality of perovskite and 2) the poor surface contact. To address the above issues, 4-butanediol ammonium Bromide (BD) is utilized to passivate Pb2+ defects by forming Pb-N bonds and fill vacancies of formamidinium ions at the buried surface of perovskite. The wettability of poly [bis (4-phenyl) (2,4,6-triMethylphenyl) amine] films is also improved due to the formation of hydrogen bonds between PTAA and BD molecules, resulting in better surface contacts and enhanced perovskite crystallinity. As a result, BD-modified perovskite thin films show a significant increase in the mean grain size, as well as a dramatic enhancement in the PL decay lifetime. The BD-treated device exhibits an efficiency of up to 21.26%, considerably higher than the control device. Moreover, the modified devices show dramatically enhanced thermal and ambient stability compared to the control ones. This methodology paves the way to obtain high-quality perovskite films for fabricating high-performance IPSCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Regulating perovskite/PCBM interface for highly efficient and stable inverted perovskite solar cells
    Gu, Wei-Min
    Zhao, Mingming
    Wang, Qing
    Gong, Kun
    Li, Xuli
    Sun, Yan
    Sun, Shaojing
    Yang, Guang
    Hu, Chunming
    Jiang, Ke-Jian
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [2] Defect passivation and interface modification by tetra-n-octadecyl ammonium bromide for efficient and stable inverted perovskite solar cells
    Liu, Weizhi
    Xiong, Jian
    Liu, Naihe
    Dai, Junqian
    Dai, Zhongjun
    Huang, Yu
    Zhang, Zheling
    Xue, Xiaogang
    Dai, Qilin
    Zhang, Jian
    CHEMICAL ENGINEERING JOURNAL, 2022, 429
  • [3] Interface Modification for Efficient and Stable Inverted Inorganic Perovskite Solar Cells
    Xu, Tianfei
    Xiang, Wanchun
    Yang, Junjie
    Kubicki, Dominik J. J.
    Tress, Wolfgang
    Chen, Tao
    Fang, Zhimin
    Liu, Yali
    Liu, Shengzhong
    ADVANCED MATERIALS, 2023, 35 (31)
  • [4] Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells
    Liu, Cheng
    Yang, Yi
    Chen, Hao
    Xu, Jian
    Liu, Ao
    Bati, Abdulaziz S. R.
    Zhu, Huihui
    Grater, Luke
    Hadke, Shreyash Sudhakar
    Huang, Chuying
    Sangwan, Vinod K.
    Cai, Tong
    Shin, Donghoon
    Chen, Lin X.
    Hersam, Mark C.
    Mirkin, Chad A.
    Chen, Bin
    Kanatzidis, Mercouri G.
    Sargent, Edward H.
    SCIENCE, 2023, 382 (6672) : 810 - 815
  • [5] Modification of energy levels by cetyltrimethylammonium bromide at the perovskite/carbon interface for highly efficient and stable perovskite solar cells
    Shi, Zhuonan
    Li, Shina
    Min, Changli
    Xie, Junjie
    Ma, Ruixin
    ORGANIC ELECTRONICS, 2023, 112
  • [6] Suppressing surface and interface recombination to afford efficient and stable inverted perovskite solar cells
    He, Xiaolong
    Arain, Zulqarnain
    Liu, Cheng
    Yang, Yi
    Chen, Jianlin
    Zhang, Xianfu
    Huang, Jingsong
    Ding, Yong
    Liu, Xuepeng
    Dai, Songyuan
    NANOSCALE, 2024, 16 (36) : 17042 - 17048
  • [7] Maltose as an Ecofriendly Modifier of the Buried Interface for Efficient and Stable Inverted Perovskite Solar Cells
    Yang, Boping
    Pan, Yili
    Ding, Yu
    Ouyang, Dan
    Zhang, Hong
    ENERGY TECHNOLOGY, 2022, 10 (09)
  • [8] Buried Interface Engineering Enables Efficient, Scalable, and Stable Inverted Perovskite Solar Cells
    Wang, Luqi
    Wang, Chao
    Li, Jing
    Geng, Cong
    Mo, Yanping
    Li, Hanxiao
    Bu, Tongle
    Tong, Jinhui
    Cheng, Yi-Bing
    Huang, Fuzhi
    SOLAR RRL, 2023, 7 (12)
  • [9] Amphoteric Ion Bridged Buried Interface for Efficient and Stable Inverted Perovskite Solar Cells
    Zhang, Yuling
    Yu, Runnan
    Li, Minghua
    He, Zhangwei
    Dong, Yiman
    Xu, Zhiyang
    Wang, Ruyue
    Ma, Zongwen
    Tan, Zhanao
    ADVANCED MATERIALS, 2024, 36 (01)
  • [10] π-Interactions suppression of buried interface defects for efficient and stable inverted perovskite solar cells
    Chen, Hui
    Yang, Jiabao
    Cao, Qi
    Wang, Tong
    Pu, Xingyu
    He, Xilai
    Chen, Xingyuan
    Li, Xuanhua
    NANO ENERGY, 2023, 117