Variable Screening and Model Averaging for Expectile Regressions

被引:3
|
作者
Tu, Yundong [1 ,2 ,3 ]
Wang, Siwei [4 ]
机构
[1] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
[3] Pazhou Lab, Guangzhou 510330, Peoples R China
[4] Hunan Univ, Coll Finance & Stat, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
LINEAR-MODELS; SELECTION; RISK;
D O I
10.1111/obes.12538
中图分类号
F [经济];
学科分类号
02 ;
摘要
Expectile regression is a useful tool in modelling data with heterogeneous conditional distributions. This paper introduces two new concepts, i.e. the expectile correlation and expectile partial correlation, which can measure the contribution from each regressor to the response in expectile regression. In ultra-high dimensional setting, the expectile partial correlation, which provides an importance ranking of the predictors, is found useful for variable screening. Theoretical results indicate that the proposed screening procedure can achieve the sure screening set. Additionally, a model selection method via extended Bayesian information criterion (EBIC) and a jackknife model averaging (JMA) method are suggested after the screening step to address model uncertainty. The screening consistency of EBIC, the asymptotic optimality of JMA in the sense of minimizing out-of-sample expectile final prediction error, and the sparsity of JMA weight are then established. Finally, numerical results demonstrate the nice performance of our proposed methods.
引用
收藏
页码:574 / 598
页数:25
相关论文
共 50 条
  • [31] TWO-STAGE BAYESIAN MODEL AVERAGING IN ENDOGENOUS VARIABLE MODELS
    Lenkoski, Alex
    Eicher, Theo S.
    Raftery, Adrian E.
    [J]. ECONOMETRIC REVIEWS, 2014, 33 (1-4) : 122 - 151
  • [32] Variable selection and model averaging in semiparametric overdispersed generalized linear models
    Cottet, Remy
    Kohn, Robert J.
    Nott, David J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 661 - 671
  • [33] VARIABLE SELECTION AND MODEL AVERAGING FOR LONGITUDINAL DATA INCORPORATING GEE APPROACH
    Yang, Hui
    Lin, Peng
    Zou, Guohua
    Liang, Hua
    [J]. STATISTICA SINICA, 2017, 27 (01) : 389 - 413
  • [34] Variable selection and Bayesian model averaging in case-control studies
    Viallefont, V
    Raftery, AE
    Richardson, S
    [J]. STATISTICS IN MEDICINE, 2001, 20 (21) : 3215 - 3230
  • [35] VARIABLE-AVERAGING RARE
    NOLL, DC
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1994, 31 (03) : 323 - 327
  • [36] Parallel regressions for variable selection using GPU
    Martins de Paula, Lauro Cassio
    Soares, Anderson S.
    Soares, Telma W. L.
    Filho, Arlindo R. G.
    Coelho, Clarimar J.
    Delbem, Alexandre C. B.
    Martins, Wellington S.
    [J]. COMPUTING, 2017, 99 (03) : 219 - 234
  • [37] AVERAGING FOR SYSTEMS WITH VARIABLE PERIOD
    LARICHEVA, VV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1971, 198 (06): : 1269 - +
  • [38] Testing inference in variable dispersion beta regressions
    Cribari-Neto, Francisco
    Souza, Tatiene C.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (12) : 1827 - 1843
  • [39] Parallel regressions for variable selection using GPU
    Lauro Cássio Martins de Paula
    Anderson S. Soares
    Telma W. L. Soares
    Arlindo R. G. Filho
    Clarimar J. Coelho
    Alexandre C. B. Delbem
    Wellington S. Martins
    [J]. Computing, 2017, 99 : 219 - 234
  • [40] REVERSE REGRESSIONS FOR LATENT-VARIABLE MODELS
    LEVINE, DK
    [J]. JOURNAL OF ECONOMETRICS, 1986, 32 (02) : 291 - 292