Denoising matrix factorization for high-dimensional time series forecasting

被引:0
|
作者
Chen, Bo [1 ]
Fang, Min [1 ]
Li, Xiao [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 36卷 / 2期
基金
中国国家自然科学基金;
关键词
Time series forecasting; Deep learning; Matrix factorization; NEURAL-NETWORK;
D O I
10.1007/s00521-023-09072-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The matrix factorization method (MF) has gained widespread popularity in recent years as an effective technique for handling high-dimensional time series data. By converting large-scale data sets into low-rank representations, MF-based methods have proven to be successful. However, these methods continue to face challenges in managing long-term dependencies, primarily due to the presence of noise and a lack of prior knowledge regarding the underlying matrix. To overcome this issue, we propose a novel approach that incorporates a latent bias effect and a denoising model, which enables the model to recover the underlying matrix more effectively and improves the precision of the model. By focusing only on relevant components, our proposed model constructs the underlying matrix more precisely through denoising operations. Our experiments conducted on four benchmark datasets demonstrate that our proposed model outperforms existing methods in terms of accuracy and robustness.
引用
收藏
页码:993 / 1005
页数:13
相关论文
共 50 条
  • [41] Estimation of latent factors for high-dimensional time series
    Lam, Clifford
    Yao, Qiwei
    Bathia, Neil
    BIOMETRIKA, 2011, 98 (04) : 901 - 918
  • [42] Sliced inverse regression for high-dimensional time series
    Becker, C
    Fried, R
    EXPLORATORY DATA ANALYSIS IN EMPIRICAL RESEARCH, PROCEEDINGS, 2003, : 3 - 11
  • [43] Determining the number of factors for high-dimensional time series
    Xia, Qiang
    Liang, Rubing
    Wu, Jianhong
    Wong, Heung
    STATISTICS AND ITS INTERFACE, 2018, 11 (02) : 307 - 316
  • [44] High-Dimensional Multivariate Time Series With Additional Structure
    Schweinberger, Michael
    Babkin, Sergii
    Ensor, Katherine B.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (03) : 610 - 622
  • [45] On consistency and sparsity for high-dimensional functional time series with to
    Guo, Shaojun
    Qiao, Xinghao
    BERNOULLI, 2023, 29 (01) : 451 - 472
  • [46] Clustering High-Dimensional Time Series Based on Parallelism
    Zhang, Ting
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (502) : 577 - 588
  • [47] Factor Modeling for Clustering High-Dimensional Time Series
    Zhang, Bo
    Pan, Guangming
    Yao, Qiwei
    Zhou, Wang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1252 - 1263
  • [48] Threshold factor models for high-dimensional time series
    Liu, Xialu
    Chen, Rong
    JOURNAL OF ECONOMETRICS, 2020, 216 (01) : 53 - 70
  • [49] Test for the mean of high-dimensional functional time series
    Yang, Lin
    Feng, Zhenghui
    Jiang, Qing
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 201
  • [50] Factor Models for High-Dimensional Tensor Time Series
    Chen, Rong
    Yang, Dan
    Zhang, Cun-Hui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) : 94 - 116