An Interpretable Deep Learning Optimized Wearable Daily Detection System for Parkinson's Disease

被引:4
|
作者
Chen, Min [1 ,2 ,3 ,4 ]
Sun, Zhanfang [5 ]
Xin, Tao [1 ,2 ]
Chen, Yan [6 ]
Su, Fei [1 ,2 ,3 ,4 ]
机构
[1] Shandong First Med Univ, Dept Neurosurg, Affiliated Hosp 1, Jinan 250014, Peoples R China
[2] Shandong Prov Qianfoshan Hosp, Jinan 250014, Peoples R China
[3] Shandong First Med Univ, Dept Radiol, Tai An 271016, Peoples R China
[4] Shandong Acad Med Sci, Tai An 271016, Peoples R China
[5] Shandong First Med Univ, Dept Neurol, Prov Hosp Affiliated, Jinan 250021, Peoples R China
[6] Shanghai Jiahui Int Hosp, Neurol Dept, Shanghai 200233, Peoples R China
关键词
Parkinson's disease; wearable sensors; daily detection; deep learning; visual interpretation; SENSORS; GAIT; FRAMEWORK; NETWORKS;
D O I
10.1109/TNSRE.2023.3314100
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Walking detection in the daily life of patients with Parkinson's disease (PD) is of great significance for tracking the progress of the disease. This study aims to implement an accurate, objective, and passive detection algorithm optimized based on an interpretable deep learning architecture for the daily walking of patients with PD and to explore the most representative spatiotemporal motor features. Five inertial measurement units attached to the wrist, ankle, and waist are used to collect motion data from 100 subjects during a 10-meter walking test. The raw data of each sensor are subjected to the continuous wavelet transform to train the classification model of the constructed 6-channel convolutional neural network (CNN). The results show that the sensor located at the waist has the best classification performance with an accuracy of 98.01%+/- 0.85% and the area under the receiver operating characteristic curve (AUC) of 0.9981 +/- 0.0017 under ten-fold cross-validation. The gradient-weighted class activation mapping shows that the feature points with greater contribution to PD were concentrated in the lower frequency band (0.5 similar to 3Hz) compared with healthy controls. The visual maps of the 3D CNN show that only three out of the six time series have a greater contribution, which is used as a basis to further optimize the model input, greatly reducing the raw data processing costs (50%) while ensuring its performance (AUC=0.9929 +/- 0.0019). To the best of our knowledge, this is the first study to consider the visual interpretation-based optimization of an intelligent classification model in the intelligent diagnosis of PD.
引用
收藏
页码:3937 / 3946
页数:10
相关论文
共 50 条
  • [31] End-to-End Deep Learning Method for Detection of Invasive Parkinson's Disease
    Mahmood, Awais
    Khan, Muhammad Mehroz
    Imran, Muhammad
    Alhajlah, Omar
    Dhahri, Habib
    Karamat, Tehmina
    DIAGNOSTICS, 2023, 13 (06)
  • [32] Detection of Parkinson's disease from handwriting using deep learning: a comparative study
    Taleb, Catherine
    Likforman-Sulem, Laurence
    Mokbel, Chafic
    Khachab, Maha
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (06) : 1813 - 1824
  • [33] Attention-Based Deep Learning Model for Early Detection of Parkinson's Disease
    Sadiq, Mohd
    Khan, Mohd Tauheed
    Masood, Sarfaraz
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 5183 - 5200
  • [34] Interpretable Machine Learning on Metabolomics Data Reveals Biomarkers for Parkinson's Disease
    Zhang, J. Diana
    Xue, Chonghua
    Kolachalama, Vijaya B.
    Donald, William A.
    ACS CENTRAL SCIENCE, 2023, 9 (05) : 1035 - 1045
  • [35] Interpretable ensemble deep learning model for early detection of Alzheimer's disease using local interpretable model-agnostic explanations
    Aghaei, Atefe
    Moghaddam, Mohsen Ebrahimi
    Malek, Hamed
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (06) : 1889 - 1902
  • [36] Tremor Detection in Parkinson's Disease from Wearable Data: A Comparative Study of Centralized Learning versus Federated Learning
    Jorge, Jhon
    Guevara, Judy C.
    Guidoni, Daniel L.
    Ramos, Hcitor S.
    Villas, Leandro A.
    da Fonseca, Nelson L. S.
    2024 20TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SMART SYSTEMS AND THE INTERNET OF THINGS, DCOSS-IOT 2024, 2024, : 724 - 731
  • [37] Wearable Sensors and Machine Learning Fusion for Parkinson's Disease Assessment
    Hammoud, Mohammed
    Shcherbak, Aleksei
    Getahun, Melaku
    Istrakova, Olga
    Shindryaeva, Nataliya
    Zimniakova, Olga
    Bril, Ekaterina
    Semenov, Maxim
    Baldycheva, Anna
    Somov, Andrey
    2024 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC 2024, 2024,
  • [38] Detection and prediction of freezing of gait with wearable sensors in Parkinson’s disease
    Wei Zhang
    Hong Sun
    Debin Huang
    Zixuan Zhang
    Jinyu Li
    Chan Wu
    Yingying Sun
    Mengyi Gong
    Zhi Wang
    Chao Sun
    Guiyun Cui
    Yuzhu Guo
    Piu Chan
    Neurological Sciences, 2024, 45 : 431 - 453
  • [39] Detection and prediction of freezing of gait with wearable sensors in Parkinson's disease
    Zhang, Wei
    Sun, Hong
    Huang, Debin
    Zhang, Zixuan
    Li, Jinyu
    Wu, Chan
    Sun, Yingying
    Gong, Mengyi
    Wang, Zhi
    Sun, Chao
    Cui, Guiyun
    Guo, Yuzhu
    Chan, Piu
    NEUROLOGICAL SCIENCES, 2023, 45 (2) : 431 - 453
  • [40] Parkinson's Disease Tremor Detection in the Wild Using Wearable Accelerometers
    San-Segundo, Ruben
    Zhang, Ada
    Cebulla, Alexander
    Panev, Stanislav
    Tabor, Griffin
    Stebbins, Katelyn
    Massa, Robyn E.
    Whitford, Andrew
    de la Torre, Fernando
    Hodgins, Jessica
    SENSORS, 2020, 20 (20) : 1 - 23