An Interpretable Deep Learning Optimized Wearable Daily Detection System for Parkinson's Disease

被引:4
|
作者
Chen, Min [1 ,2 ,3 ,4 ]
Sun, Zhanfang [5 ]
Xin, Tao [1 ,2 ]
Chen, Yan [6 ]
Su, Fei [1 ,2 ,3 ,4 ]
机构
[1] Shandong First Med Univ, Dept Neurosurg, Affiliated Hosp 1, Jinan 250014, Peoples R China
[2] Shandong Prov Qianfoshan Hosp, Jinan 250014, Peoples R China
[3] Shandong First Med Univ, Dept Radiol, Tai An 271016, Peoples R China
[4] Shandong Acad Med Sci, Tai An 271016, Peoples R China
[5] Shandong First Med Univ, Dept Neurol, Prov Hosp Affiliated, Jinan 250021, Peoples R China
[6] Shanghai Jiahui Int Hosp, Neurol Dept, Shanghai 200233, Peoples R China
关键词
Parkinson's disease; wearable sensors; daily detection; deep learning; visual interpretation; SENSORS; GAIT; FRAMEWORK; NETWORKS;
D O I
10.1109/TNSRE.2023.3314100
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Walking detection in the daily life of patients with Parkinson's disease (PD) is of great significance for tracking the progress of the disease. This study aims to implement an accurate, objective, and passive detection algorithm optimized based on an interpretable deep learning architecture for the daily walking of patients with PD and to explore the most representative spatiotemporal motor features. Five inertial measurement units attached to the wrist, ankle, and waist are used to collect motion data from 100 subjects during a 10-meter walking test. The raw data of each sensor are subjected to the continuous wavelet transform to train the classification model of the constructed 6-channel convolutional neural network (CNN). The results show that the sensor located at the waist has the best classification performance with an accuracy of 98.01%+/- 0.85% and the area under the receiver operating characteristic curve (AUC) of 0.9981 +/- 0.0017 under ten-fold cross-validation. The gradient-weighted class activation mapping shows that the feature points with greater contribution to PD were concentrated in the lower frequency band (0.5 similar to 3Hz) compared with healthy controls. The visual maps of the 3D CNN show that only three out of the six time series have a greater contribution, which is used as a basis to further optimize the model input, greatly reducing the raw data processing costs (50%) while ensuring its performance (AUC=0.9929 +/- 0.0019). To the best of our knowledge, this is the first study to consider the visual interpretation-based optimization of an intelligent classification model in the intelligent diagnosis of PD.
引用
收藏
页码:3937 / 3946
页数:10
相关论文
共 50 条
  • [1] Deep Learning for Daily Monitoring of Parkinson's Disease Outside the Clinic Using Wearable Sensors
    Atri, Roozbeh
    Urban, Kevin
    Marebwa, Barbara
    Simuni, Tanya
    Tanner, Caroline
    Siderowf, Andrew
    Frasier, Mark
    Haas, Magali
    Lancashire, Lee
    SENSORS, 2022, 22 (18)
  • [2] Deep Transfer Learning Based Parkinson's Disease Detection Using Optimized Feature Selection
    Abdullah, Sura Mahmood
    Abbas, Thekra
    Bashir, Munzir Hubiba
    Khaja, Ishfaq Ahmad
    Ahmad, Musheer
    Soliman, Naglaa F. F.
    El-Shafai, Walid
    IEEE ACCESS, 2023, 11 : 3511 - 3524
  • [3] An interpretable deep learning Bayesian optimized random forest framework for the diagnosis of Parkinson's disease in structural magnetic resonance images
    Toumi, Sihem Nour Elhouda
    Belkhamsa, Noureddine
    Cherfa, Yazid
    Bouzouad, Assia Cherfa
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (04)
  • [4] A review of machine learning and deep learning for Parkinson’s disease detection
    Hajar Rabie
    Moulay A. Akhloufi
    Discover Artificial Intelligence, 5 (1):
  • [5] Review of Parkinson’s disease detection with deep‑learning machines
    Ali Abdulameer Aldujaili
    Manuel Rosa-Zurera
    Manuel Utrilla-Manso
    Multimedia Tools and Applications, 2025, 84 (6) : 3015 - 3051
  • [6] Optimized Deep Learning for the Classification of Parkinson’s Disease Based on Voice Features
    Sharanyaa S.
    Sambath M.
    Renjith P.N.
    Critical Reviews in Biomedical Engineering, 2022, 50 (05) : 1 - 28
  • [7] Deep Learning for Medication Assessment of Individuals with Parkinson's Disease Using Wearable Sensors
    Hssayeni, Murtadha D.
    Adams, Jamie L.
    Ghoraani, Behnaz
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 3701 - 3704
  • [8] Wearable-Based Parkinson's Disease Severity Monitoring Using Deep Learning
    Goschenhofer, Jann
    Pfister, Franz M. J.
    Yuksel, Kamer Ali
    Bischl, Bernd
    Fietzek, Urban
    Thomas, Janek
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III, 2020, 11908 : 400 - 415
  • [9] Deep learning and wearable sensors for the diagnosis and monitoring of Parkinson's disease: A systematic review
    Sigcha, Luis
    Borzi, Luigi
    Amato, Federica
    Rechichi, Irene
    Ramos-Romero, Carlos
    Cardenas, Andres
    Gasco, Luis
    Olmo, Gabriella
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 229
  • [10] Parkinson's Disease Gait Evaluation Leveraging Wearable Insoles and Deep Learning Approach*
    Channa, Asma
    Popescu, Nirvana
    Faisal, Muhammad
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 543 - 549