Low-Light Image Enhancement via Structure Modeling and Guidance

被引:53
|
作者
Xu, Xiaogang [1 ]
Wang, Ruixing [2 ]
Lu, Jiangbo [3 ]
机构
[1] Zhejiang Lab, Hangzhou, Peoples R China
[2] Honor Device Co Ltd, Shenzhen, Peoples R China
[3] SmartMore Corp, Hong Kong, Peoples R China
关键词
D O I
10.1109/CVPR52729.2023.00954
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new framework for low-light image enhancement by simultaneously conducting the appearance as well as structure modeling. It employs the structural feature to guide the appearance enhancement, leading to sharp and realistic results. The structure modeling in our framework is implemented as the edge detection in low-light images. It is achieved with a modified generative model via designing a structure-aware feature extractor and generator. The detected edge maps can accurately emphasize the essential structural information, and the edge prediction is robust towards the noises in dark areas. Moreover, to improve the appearance modeling, which is implemented with a simple U-Net, a novel structure-guided enhancement module is proposed with structure-guided feature synthesis layers. The appearance modeling, edge detector, and enhancement module can be trained end-to-end. The experiments are conducted on representative datasets (sRGB and RAW domains), showing that our model consistently achieves SOTA performance on all datasets with the same architecture. The code is available at https://github.com/xiaogang00/SMG-LLIE.
引用
收藏
页码:9893 / 9903
页数:11
相关论文
共 50 条
  • [31] Low-light image enhancement via multistage feature fusion network
    Tan, Mingming
    Fan, Jiayi
    Fan, Guodong
    Gan, Min
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)
  • [32] Low-light Image Enhancement via Extend Atmospheric Scattering Model
    Wang Manli
    Chen Bingbing
    Zhang Changsen
    ACTA PHOTONICA SINICA, 2023, 52 (06)
  • [33] Low-light image enhancement via multistage Laplacian feature fusion
    Liu, Zhenbing
    Huang, Yingxin
    Zhang, Ruojie
    Lu, Haoxiang
    Wang, Wenhao
    Zhang, Zhaoyuan
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [34] Low-light image enhancement via illumination optimization and color correction
    Zhang, Wenbo
    Xu, Liang
    Wu, Jianjun
    Huang, Wei
    Shi, Xiaofan
    Li, Yanli
    COMPUTERS & GRAPHICS-UK, 2025, 126
  • [35] Low-Light Video Enhancement with Synthetic Event Guidance
    Liu, Lin
    An, Junfeng
    Liu, Jianzhuang
    Yuan, Shanxin
    Chen, Xiangyu
    Zhou, Wengang
    Li, Houqiang
    Wang, Yan Feng
    Tian, Qi
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 1692 - 1700
  • [36] Method for enhancement of the multi-scale low-light image by combining an attention guidance
    Zhang Y.
    Li W.
    Li C.
    Ding S.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 129 - 136
  • [37] A structure and texture revealing retinex model for low-light image enhancement
    Xuesong Li
    Qilei Li
    Marco Anisetti
    Gwanggil Jeon
    Mingliang Gao
    Multimedia Tools and Applications, 2024, 83 : 2323 - 2347
  • [38] Benchmarking Low-Light Image Enhancement and Beyond
    Liu, Jiaying
    Xu, Dejia
    Yang, Wenhan
    Fan, Minhao
    Huang, Haofeng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (04) : 1153 - 1184
  • [39] A structure and texture revealing retinex model for low-light image enhancement
    Li, Xuesong
    Li, Qilei
    Anisetti, Marco
    Jeon, Gwanggil
    Gao, Mingliang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 2323 - 2347
  • [40] Structure-Texture Aware Network for Low-Light Image Enhancement
    Xu, Kai
    Chen, Huaian
    Xu, Chunmei
    Jin, Yi
    Zhu, Changan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) : 4983 - 4996