PASIFTNet: Scale-and-Directional-Aware Semantic Segmentation of Point Clouds

被引:3
|
作者
Wang, Shaofan [1 ]
Liu, Ying [1 ]
Wang, Lichun [1 ]
Sun, Yanfeng [1 ]
Yin, Baocai [1 ]
机构
[1] Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
Semantic segmentation; Point-atrous convolution; Scale-and-directional-aware; NETWORK; AGGREGATION;
D O I
10.1016/j.cad.2022.103462
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Point clouds obey the sparsity, disorderliness and irregularity properties, leading to noisy or unrobust features during the 3D semantic segmentation task. Existing approaches cannot fully mine local geom-etry and context information of point clouds, due to their irrational feature learning or neighborhood selection schemes. In this paper, we propose a Point-Atrous SIFT Network (PASIFTNet) for learning multi-scale multi-directional features of point clouds. PASIFTNet is a hierarchical encoder-decoder net-work, which combines the Point-Atrous SIFT (PASIFT) modules and edge-preserved pooling/unpooling modules alternatively during the encoder/decoder stage. The key component of PASIFTNet is the Point-Atrous Orientation Encoding unit of the PASIFT module, which can arbitrarily expand its receptive fields to incorporate larger context information and extract scale-and-directional-aware feature point information, benefiting from the quadrant-wise SIFT-like point-atrous convolution. Moreover, the edge -preserved pooling/unpooling modules complement PASIFTNet by preserving the edge features and recovering the high-dimensional features of point clouds. We conduct experiments on two public 3D point cloud datasets: ScanNet, S3DIS and a real-world unlabeled dataset FARO-3 collected by the FARO laser scanner. The quantitative results show that, PASIFTNet achieves 86.8% overall accuracy on ScanNet and achieves 86.5% overall accuracy and 68.3% mean intersection-over-union on S3DIS. Moreover, PASIFTNet exhibits a satisfactory robustness and generalization ability towards unknown scenes on FARO-3.& COPY; 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Semantic segmentation of multimodal point clouds from the railway context
    Dibari, P.
    Nitti, M.
    Maglietta, R.
    Castellano, G.
    Dimauro, G.
    Reno, V
    MULTIMODAL SENSING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS II, 2021, 11785
  • [42] Interdimensional Knowledge Transfer for Semantic Segmentation on LiDAR Point Clouds
    Ha, Seongheon
    Kim, Yeogyeong
    Park, Jinsun
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7501 - 7508
  • [43] Semantic Segmentation of Airborne LiDAR Point Clouds With Noisy Labels
    Gao, Yuan
    Xia, Shaobo
    Wang, Cheng
    Xi, Xiaohuan
    Yang, Bisheng
    Xie, Chou
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [44] SEGCloud: Semantic Segmentation of 3D Point Clouds
    Tchapmi, Lyne P.
    Choy, Christopher B.
    Armeni, Iro
    Gwak, JunYoung
    Savarese, Silvio
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 537 - 547
  • [45] Open-world Semantic Segmentation for LIDAR Point Clouds
    Cen, Jun
    Yun, Peng
    Zhang, Shiwei
    Cai, Junhao
    Luan, Di
    Tang, Mingqian
    Liu, Ming
    Wang, Michael Yu
    COMPUTER VISION, ECCV 2022, PT XXXVIII, 2022, 13698 : 318 - 334
  • [46] Point attention network for semantic segmentation of 3D point clouds
    Feng, Mingtao
    Zhang, Liang
    Lin, Xuefei
    Gilani, Syed Zulqarnain
    Mian, Ajmal
    PATTERN RECOGNITION, 2020, 107 (107)
  • [47] Feature Graph Convolution Network With Attentive Fusion for Large-Scale Point Clouds Semantic Segmentation
    Chen, Jun
    Chen, Yiping
    Wang, Cheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [48] Active Spatio-Fine Enhancement Network for Semantic Segmentation of Large-Scale Point Clouds
    Chen, Xijiang
    Wang, Zihao
    Zhao, Bufan
    Qin, Mengjiao
    Han, Xianquan
    Ozdemir, Emirhan
    IEEE Sensors Journal, 2024, 24 (22): : 37358 - 37379
  • [49] Active Spatio-Fine Enhancement Network for Semantic Segmentation of Large-Scale Point Clouds
    Chen, Xijiang
    Wang, Zihao
    Zhao, Bufan
    Qin, Mengjiao
    Han, Xianquan
    Ozdemir, Emirhan
    IEEE SENSORS JOURNAL, 2024, 24 (22) : 37358 - 37379
  • [50] Push-the-Boundary: Boundary-aware Feature Propagation for Semantic Segmentation of 3D Point Clouds
    Du, Shenglan
    Ibrahimli, Nail
    Stoter, Jantien
    Kooij, Julian
    Nan, Liangliang
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 124 - 133