Dual single-atom Ce-Ti/MnO2 catalyst enhances low-temperature NH3-SCR performance with high H2O and SO2 resistance

被引:28
|
作者
Song, Jingjing [1 ,2 ]
Liu, Shaomian [2 ]
Ji, Yongjun [3 ]
Xu, Wenqing [2 ]
Yu, Jian [2 ]
Liu, Bing [4 ]
Chen, Wenxing [5 ]
Zhang, Jianling [2 ]
Jia, Lihua [1 ]
Zhu, Tingyu [2 ]
Zhong, Ziyi [6 ,7 ]
Xu, Guangwen [8 ]
Su, Fabing [2 ,8 ]
机构
[1] Qiqihar Univ, Coll Chem & Chem Engn, Qiqihar 161006, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, Beijing 100190, Peoples R China
[3] Beijing Technol & Business Univ, Sch Light Ind, Beijing 100048, Peoples R China
[4] Jiangnan Univ, Sch Chem & Mat Engn, Dept Chem Engn, Wuxi 214122, Jiangsu, Peoples R China
[5] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[6] Guangdong Technion Israel Inst Technol GTIIT, Dept Chem Engn, Shantou 515063, Peoples R China
[7] Technion Israel Inst Technol IIT, IL-32000 Haifa, Israel
[8] Shenyang Univ Chem Technol, Inst Ind Chem & Energy Technol, Shenyang 110142, Peoples R China
基金
中国国家自然科学基金;
关键词
dual single atom catalyst; Ce-Ti/MnO2; selective catalytic reduction of NOx with NH3 (NH3-SCR); low-temperature performance; H2O- and SO2-resistance; MNOX-CEO2; CATALYSTS; REACTION-MECHANISM; OXIDE CATALYSTS; REDUCTION; NO; NH3; NI; SCR; CO; TOLERANCE;
D O I
10.1007/s12274-022-4790-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mn-based catalysts have exhibited promising performance in low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR). However, challenges such as H2O- or SO2-induced poisoning to these catalysts still remain. Herein, we report an efficient strategy to prepare the dual single-atom Ce-Ti/MnO2 catalyst via ball-milling and calcination processes to address these issues. Ce-Ti/MnO2 showed better catalytic performance with a higher NO conversion and enhanced H2O- and SO2-resistance at a low-temperature window (100-150 degrees C) than the MnO2, single-atom Ce/MnO2, and Ti/MnO2 catalysts. The in situ infrared Fourier transform spectroscopy analysis confirmed there is no competitive adsorption between NOx and H2O over the Ce-Ti/MnO2 catalyst. The calculation results showed that the synergistic interaction of the neighboring Ce-Ti dual atoms as sacrificial sites weakens the ability of the active Mn sites for binding SO2 and H2O but enhances their binding to NH3. The insight obtained in this work deepens the understanding of catalysis for NH3-SCR. The synthesis strategy developed in this work is easily scaled up to commercialization and applicable to preparing other MnO2-based single-atom catalysts.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 50 条
  • [31] NH3-SCR performance and the resistance to SO2 for Nb doped vanadium based catalyst at low temperatures
    Zhu, Lin
    Zhong, Zhaoping
    Xue, Jianming
    Xu, Yueyang
    Wang, Chunhua
    Wang, Lixia
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2018, 65 : 306 - 316
  • [32] Research of SO2 resistance of MnOx catalyst modified by Ce for low temperature SCR with NH3
    Wang, Yan
    Yang, Liu
    Liao, Weiping
    Wang, Fei
    PROGRESS IN ENVIRONMENTAL SCIENCE AND ENGINEERING (ICEESD2011), PTS 1-5, 2012, 356-360 : 529 - +
  • [33] Effect of MnO2 crystal types on CeO2@MnO2 oxides catalysts for low-temperature NH3-SCR
    Chen, Lin
    Ren, Shan
    Xing, Xiangdong
    Yang, Jie
    Li, Jiangling
    Yang, Jian
    Liu, Qingcai
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (05):
  • [34] Enhanced SO2 and H2O resistance of MnTiSnOy composite oxide for NH3-SCR through Sm modification
    Qin, Qiuju
    Chen, Kean
    Xie, Shangzhi
    Li, Lulu
    Ou, Xuemei
    Wei, Xiaoling
    Luo, Xintian
    Dong, Lihui
    Li, Bin
    APPLIED SURFACE SCIENCE, 2022, 583
  • [35] Excellent operating temperature window and H2O/SO2 resistances of Fe-Ce catalyst modified by different sulfation strategies for NH3-SCR reaction
    Xiaobo Wang
    Ning Guo
    Jiaqi Peng
    Yue Wang
    Haijie Li
    Dongdong Ren
    Keting Gui
    Environmental Science and Pollution Research, 2023, 30 : 50635 - 50648
  • [36] Enhanced low-temperature NH3-SCR performance of Ce/TiO2 modified by Ho catalyst
    Zhang, Ting-ting
    Yan, Li-min
    ROYAL SOCIETY OPEN SCIENCE, 2019, 6 (03):
  • [37] Excellent operating temperature window and H2O/SO2 resistances of Fe-Ce catalyst modified by different sulfation strategies for NH3-SCR reaction
    Wang, Xiaobo
    Guo, Ning
    Peng, Jiaqi
    Wang, Yue
    Li, Haijie
    Ren, Dongdong
    Gui, Keting
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (17) : 50635 - 50648
  • [38] Fabrication of a wide temperature Mn-Ce/TNU-9 catalyst with superior NH3-SCR activity and strong SO2 and H2O tolerance
    Ji, Shuai
    Li, Zhifang
    Song, Kun
    Li, Hairui
    Li, Yueyu
    Yang, Jian
    Li, Mingjie
    Yang, Chonglong
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (08) : 3857 - 3865
  • [39] Composite catalytic systems: A strategy for developing the low temperature NH3-SCR catalysts with satisfactory SO2 and H2O tolerance
    Yu, Shuohan
    Lu, Yiyang
    Cao, Yuan
    Wang, Jiaming
    Sun, Bowen
    Gao, Fei
    Tang, Changjin
    Dong, Lin
    CATALYSIS TODAY, 2019, 327 : 235 - 245
  • [40] Significantly enhanced activity and SO2 resistance of Zr-modified CeTiOx catalyst for low-temperature NH3-SCR by H2 reduction treatment
    Wei, Xiaoling
    Zhao, Runqi
    Chu, Bingxian
    Xie, Shangzhi
    Qin, Qiuju
    Chen, Kean
    Li, Lulu
    Zhao, Shuangliang
    Li, Bin
    Dong, Lihui
    MOLECULAR CATALYSIS, 2022, 518