Dual single-atom Ce-Ti/MnO2 catalyst enhances low-temperature NH3-SCR performance with high H2O and SO2 resistance

被引:28
|
作者
Song, Jingjing [1 ,2 ]
Liu, Shaomian [2 ]
Ji, Yongjun [3 ]
Xu, Wenqing [2 ]
Yu, Jian [2 ]
Liu, Bing [4 ]
Chen, Wenxing [5 ]
Zhang, Jianling [2 ]
Jia, Lihua [1 ]
Zhu, Tingyu [2 ]
Zhong, Ziyi [6 ,7 ]
Xu, Guangwen [8 ]
Su, Fabing [2 ,8 ]
机构
[1] Qiqihar Univ, Coll Chem & Chem Engn, Qiqihar 161006, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, Beijing 100190, Peoples R China
[3] Beijing Technol & Business Univ, Sch Light Ind, Beijing 100048, Peoples R China
[4] Jiangnan Univ, Sch Chem & Mat Engn, Dept Chem Engn, Wuxi 214122, Jiangsu, Peoples R China
[5] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[6] Guangdong Technion Israel Inst Technol GTIIT, Dept Chem Engn, Shantou 515063, Peoples R China
[7] Technion Israel Inst Technol IIT, IL-32000 Haifa, Israel
[8] Shenyang Univ Chem Technol, Inst Ind Chem & Energy Technol, Shenyang 110142, Peoples R China
基金
中国国家自然科学基金;
关键词
dual single atom catalyst; Ce-Ti/MnO2; selective catalytic reduction of NOx with NH3 (NH3-SCR); low-temperature performance; H2O- and SO2-resistance; MNOX-CEO2; CATALYSTS; REACTION-MECHANISM; OXIDE CATALYSTS; REDUCTION; NO; NH3; NI; SCR; CO; TOLERANCE;
D O I
10.1007/s12274-022-4790-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mn-based catalysts have exhibited promising performance in low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR). However, challenges such as H2O- or SO2-induced poisoning to these catalysts still remain. Herein, we report an efficient strategy to prepare the dual single-atom Ce-Ti/MnO2 catalyst via ball-milling and calcination processes to address these issues. Ce-Ti/MnO2 showed better catalytic performance with a higher NO conversion and enhanced H2O- and SO2-resistance at a low-temperature window (100-150 degrees C) than the MnO2, single-atom Ce/MnO2, and Ti/MnO2 catalysts. The in situ infrared Fourier transform spectroscopy analysis confirmed there is no competitive adsorption between NOx and H2O over the Ce-Ti/MnO2 catalyst. The calculation results showed that the synergistic interaction of the neighboring Ce-Ti dual atoms as sacrificial sites weakens the ability of the active Mn sites for binding SO2 and H2O but enhances their binding to NH3. The insight obtained in this work deepens the understanding of catalysis for NH3-SCR. The synthesis strategy developed in this work is easily scaled up to commercialization and applicable to preparing other MnO2-based single-atom catalysts.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 50 条
  • [1] Dual single-atom Ce-Ti/MnO2 catalyst enhances low-temperature NH3-SCR performance with high H2O and SO2 resistance
    Jingjing Song
    Shaomian Liu
    Yongjun Ji
    Wenqing Xu
    Jian Yu
    Bing Liu
    Wenxing Chen
    Jianling Zhang
    Lihua Jia
    Tingyu Zhu
    Ziyi Zhong
    Guangwen Xu
    Fabing Su
    Nano Research, 2023, 16 : 299 - 308
  • [2] High Resistance of SO2 and H2O over Monolithic Mn-Fe-Ce-Al-O Catalyst for Low Temperature NH3-SCR
    Hao, Shijie
    Cai, Yandi
    Sun, Chuanzhi
    Sun, Jingfang
    Tang, Changjin
    Dong, Lin
    CATALYSTS, 2020, 10 (11) : 1 - 13
  • [3] Effect of Promoters on the Catalytic Performance and SO2/H2O Resistance of α-MnO2 Catalysts for Low Temperature NH3 -SCR
    Jiang, Haoxi
    Wang, Jing
    Zhou, Jiali
    Chen, Yifei
    Zhang, Minhua
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (04) : 1760 - 1768
  • [4] MnCe/GAC-CNTs catalyst with high activity, SO2 and H2O tolerance for low-temperature NH3-SCR
    Xu, Yuchuan
    Wang, Pengchen
    Pu, Yijuan
    Jiang, Luyang
    Yang, Lin
    Jiang, Wenju
    Yao, Lu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 305
  • [5] Mechanism of Ce-Modified Birnessite-MnO2 in Promoting SO2 Poisoning Resistance for Low-Temperature NH3-SCR
    Fang, Xue
    Liu, Yongjun
    Cheng, Yan
    Cen, Wanglai
    ACS CATALYSIS, 2021, 11 (07): : 4125 - 4135
  • [6] A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance
    Xu, Guiying
    Guo, Xiaolong
    Cheng, Xingxing
    Yu, Jian
    Fang, Baizeng
    NANOSCALE, 2021, 13 (15) : 7052 - 7080
  • [7] Improvement of NH3-SCR activity and resistance to SO2 and H2O by Ce modified La-Mn perovskite catalyst
    Shi, Xueke
    Guo, Jiaxiu
    Shen, Ting
    Fan, Aidong
    Liu, Yongjun
    Yuan, Shandong
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2021, 126 : 102 - 111
  • [8] Effect of calcination temperature on low-temperature NH3-SCR activity and the resistance of SO2 with or without H2O over Fe-Mn-Zr catalyst
    Fang, Ningjie
    Guo, Jiaxiu
    Shu, Song
    Luo, Hongdi
    Li, Jianjun
    Chu, Yinghao
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 93 : 277 - 288
  • [9] Highly efficient NOx reduction with superior H2O and SO2 resistance on Ce-Ti/γ-Fe2O3 dual single-atom Catalysts: Synergistic interactions and mechanistic insights
    Ding, Jianping
    Zhou, Xiaoyan
    Yang, Zhengzheng
    Liu, Changgeng
    Sun, Mingchao
    Yang, Congling
    Fan, Lu
    FUEL, 2025, 387
  • [10] V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO
    Jiang, Lijun
    Liu, Qingcai
    Ran, Guangjing
    Kong, Ming
    Ren, Shan
    Yang, Jian
    Li, Jiangling
    CHEMICAL ENGINEERING JOURNAL, 2019, 370 (810-821) : 810 - 821