Hybrid trilinear and bilinear programming for aligning partially overlapping point sets

被引:1
|
作者
Lian, Wei [1 ]
Zuo, Wangmeng [2 ]
机构
[1] Changzhi Univ, Dept Comp Sci, Changzhi 046031, Shanxi, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
关键词
Partial overlap; Bilinear monomial; Trilinear nomomial; Point set registration; Convex envelope; Linear assignment; REGISTRATION; TRANSFORMATION; ALGORITHM;
D O I
10.1016/j.neucom.2023.126482
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many applications, we need algorithms which can align partially overlapping point sets and are invari-ant to the corresponding transformations. In this work, a method possessing such properties is realized by minimizing the objective of the robust point matching (RPM) algorithm. We first show that the RPM objective is a cubic polynomial. We then utilize the convex envelopes of trilinear and bilinear monomials to derive its lower bound function. The resulting lower bound problem has the merit that it can be effi-ciently solved via linear assignment and low dimensional convex quadratic programming. We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently. Experimental results demonstrated better robustness of the proposed method against non-rigid deformation, positional noise and outliers in case that outliers are not mixed with inliers when compared with the state-of-the-art approaches. They also showed that it has competitive efficiency and scales well with problem size.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条