Detection and Classification of Cotton Foreign Fibers Based on Polarization Imaging and Improved YOLOv5

被引:14
|
作者
Wang, Rui [1 ]
Zhang, Zhi-Feng [1 ]
Yang, Ben [1 ]
Xi, Hai-Qi [1 ]
Zhai, Yu-Sheng [1 ]
Zhang, Rui-Liang [1 ]
Geng, Li-Jie [1 ]
Chen, Zhi-Yong [2 ]
Yang, Kun [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Phys & Elect Engn, Zhengzhou 450002, Peoples R China
[2] Fiber Inspect Bur Henan Prov, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; foreign fiber detection; YOLOv5; polarization imaging; line laser;
D O I
10.3390/s23094415
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
It is important to detect and classify foreign fibers in cotton, especially white and transparent foreign fibers, to produce subsequent yarn and textile quality. There are some problems in the actual cotton foreign fiber removing process, such as some foreign fibers missing inspection, low recognition accuracy of small foreign fibers, and low detection speed. A polarization imaging device of cotton foreign fiber was constructed based on the difference in optical properties and polarization characteristics between cotton fibers. An object detection and classification algorithm based on an improved YOLOv5 was proposed to achieve small foreign fiber recognition and classification. The methods were as follows: (1) The lightweight network Shufflenetv2 with the Hard-Swish activation function was used as the backbone feature extraction network to improve the detection speed and reduce the model volume. (2) The PANet network connection of YOLOv5 was modified to obtain a fine-grained feature map to improve the detection accuracy for small targets. (3) A CA attention module was added to the YOLOv5 network to increase the weight of the useful features while suppressing the weight of invalid features to improve the detection accuracy of foreign fiber targets. Moreover, we conducted ablation experiments on the improved strategy. The model volume, mAP@0.5, mAP@0.5:0.95, and FPS of the improved YOLOv5 were up to 0.75 MB, 96.9%, 59.9%, and 385 f/s, respectively, compared to YOLOv5, and the improved YOLOv5 increased by 1.03%, 7.13%, and 126.47%, respectively, which proves that the method can be applied to the vision system of an actual production line for cotton foreign fiber detection.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Substation Equipment Abnormity Detection Based on Improved YOLOv5
    Zhang, Yu
    Li, Weixing
    Zhou, Jian
    Gao, Yan
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6654 - 6659
  • [32] Driver distracted driving detection based on improved YOLOv5
    Chen R.-X.
    Hu C.-C.
    Hu X.-L.
    Yang L.-X.
    Zhang J.
    He J.-L.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (04): : 959 - 968
  • [33] Vehicle And Pedestrian Detection Algorithm Based on Improved YOLOv5
    Sun, Jiuhan
    Wang, Zhifeng
    IAENG International Journal of Computer Science, 2023, 50 (04)
  • [34] Improved Small Object Detection Algorithm Based on YOLOv5
    Xu, Bo
    Gao, Bin
    Li, Yunhu
    IEEE INTELLIGENT SYSTEMS, 2024, 39 (05) : 57 - 65
  • [35] An Improved Distraction Behavior Detection Algorithm Based on YOLOv5
    Zhou, Keke
    Zheng, Guoqiang
    Zhai, Huihui
    Lv, Xiangshuai
    Zhang, Weizhen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (02): : 2571 - 2585
  • [36] Metal surface defect detection based on improved YOLOv5
    Zhou, Chuande
    Lu, Zhenyu
    Lv, Zhongliang
    Meng, Minghui
    Tan, Yonghu
    Xia, Kewen
    Liu, Kang
    Zuo, Hailun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [37] Small gastric polyp detection based on the improved YOLOv5
    Wu, Linfei
    Liu, Jin
    Yang, Haima
    Huang, Bo
    Liu, Haishan
    Cheng, Shaowei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71773 - 71788
  • [38] Small Object Detection Method based on Improved YOLOv5
    Gao, Tianyu
    Wushouer, Mairidan
    Tuerhong, Gulanbaier
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 144 - 149
  • [39] Lightweight highland barley detection based on improved YOLOv5
    Cai, Minghui
    Deng, Hui
    Cai, Jianwei
    Guo, Weipeng
    Hu, Zhipeng
    Yu, Dongzheng
    Zhang, Houxi
    PLANT METHODS, 2025, 21 (01)
  • [40] Detection of River Floating Garbage Based on Improved YOLOv5
    Yang, Xingshuai
    Zhao, Jingyi
    Zhao, Li
    Zhang, Haiyang
    Li, Li
    Ji, Zhanlin
    Ganchev, Ivan
    MATHEMATICS, 2022, 10 (22)