Efficient suppression of parkinsonian beta oscillations in a closed-loop model of deep brain stimulation with amplitude modulation

被引:5
|
作者
Bahadori-Jahromi, Fatemeh [1 ]
Salehi, Sina [2 ]
Asl, Mojtaba Madadi [3 ,4 ]
Valizadeh, Alireza [1 ,4 ]
机构
[1] Inst Adv Studies Basic Sci IASBS, Dept Phys, Zanjan, Iran
[2] Shiraz Univ Med Sci, Shiraz Neurosci Res Ctr, Shiraz, Iran
[3] Inst Res Fundamental Sci IPM, Sch Biol Sci, Tehran, Iran
[4] Pasargad Inst Adv Innovat Solut PIAIS, Tehran, Iran
来源
关键词
beta oscillation; Parkinson's disease; closed-loop deep brain stimulation; amplitude modulation; synchronization; HIGH-FREQUENCY STIMULATION; SUBTHALAMIC NUCLEUS; BASAL GANGLIA; GLOBUS-PALLIDUS; MOVEMENT-DISORDERS; GAMMA OSCILLATIONS; PROJECTION NEURONS; TRANSMISSION; NETWORK; PRIMATE;
D O I
10.3389/fnhum.2022.1013155
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
IntroductionParkinson's disease (PD) is a movement disorder characterized by the pathological beta band (15-30 Hz) neural oscillations within the basal ganglia (BG). It is shown that the suppression of abnormal beta oscillations is correlated with the improvement of PD motor symptoms, which is a goal of standard therapies including deep brain stimulation (DBS). To overcome the stimulation-induced side effects and inefficiencies of conventional DBS (cDBS) and to reduce the administered stimulation current, closed-loop adaptive DBS (aDBS) techniques were developed. In this method, the frequency and/or amplitude of stimulation are modulated based on various disease biomarkers. MethodsHere, by computational modeling of a cortico-BG-thalamic network in normal and PD conditions, we show that closed-loop aDBS of the subthalamic nucleus (STN) with amplitude modulation leads to a more effective suppression of pathological beta oscillations within the parkinsonian BG. ResultsOur results show that beta band neural oscillations are restored to their normal range and the reliability of the response of the thalamic neurons to motor cortex commands is retained due to aDBS with amplitude modulation. Furthermore, notably less stimulation current is administered during aDBS compared with cDBS due to a closed-loop control of stimulation amplitude based on the STN local field potential (LFP) beta activity. DiscussionEfficient models of closed-loop stimulation may contribute to the clinical development of optimized aDBS techniques designed to reduce potential stimulation-induced side effects of cDBS in PD patients while leading to a better therapeutic outcome.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Closed-Loop Deep Brain Stimulation Successfully Modulates Hippocampal Activity in an Animal Model
    Cheng, Jennifer J.
    Anderson, William S.
    NEUROSURGERY, 2015, 76 (04) : N13 - N15
  • [32] Closed-Loop Stimulation Modulating Beta Oscillations in the Globus Pallidus External Segment
    Chen, Mingming
    Zhu, Yajie
    Zhang, Rui
    Wan, Hong
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2021, 168 : S184 - S184
  • [33] Modulation of critical brain dynamics using closed-loop neurofeedback stimulation
    Zhigalov, Alexander
    Kaplan, Alexander
    Palva, J. Matias
    CLINICAL NEUROPHYSIOLOGY, 2016, 127 (08) : 2882 - 2889
  • [34] Cortical Brain-Computer Interface for Closed-Loop Deep Brain Stimulation
    Herron, Jeffrey A.
    Thompson, Margaret C.
    Brown, Timothy
    Chizeck, Howard Jay
    Ojemann, Jeffrey G.
    Ko, Andrew L.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (11) : 2180 - 2187
  • [35] Simulation of PID Control Schemes for Closed-Loop Deep Brain Stimulation
    Dunn, Eleanor M.
    Lowery, Madeleine M.
    2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 1182 - 1185
  • [36] Closed-loop systems for deep brain stimulation to treat neuropsychiatric disorders
    Balachandar, Arjun
    Phokaewvarangkul, Onanong
    Fasano, Alfonso
    EXPERT REVIEW OF MEDICAL DEVICES, 2024, 21 (12) : 1141 - 1152
  • [37] Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation
    Popovych, Oleksandr V.
    Lysyansky, Borys
    Rosenblum, Michael
    Pikovsky, Arkady
    Tass, Peter A.
    PLOS ONE, 2017, 12 (03):
  • [38] Functional Connectivity Altering in Hippocampus with Closed-loop Deep Brain Stimulation
    Gong, Cihun-Siyong Alex
    Tsai, Yuan-Ting
    Chen, Ji-An
    Lai, Hsin-Yi
    Wei, Wei-Che
    Chen, You-Yin
    2014 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2014,
  • [39] Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond
    Walid Bouthour
    Pierre Mégevand
    John Donoghue
    Christian Lüscher
    Niels Birbaumer
    Paul Krack
    Nature Reviews Neurology, 2019, 15 : 343 - 352
  • [40] Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond
    Bouthour, Walid
    Megevand, Pierre
    Donoghue, John
    Luscher, Christian
    Birbaumer, Niels
    Krack, Paul
    NATURE REVIEWS NEUROLOGY, 2019, 15 (06) : 343 - 352