A rapid and high-throughput Helicobacterpylori RPA-CRISPR/Cas12a-based nucleic acid detection system

被引:27
|
作者
Liu, Hua [1 ]
Wang, Jinbin [2 ]
Hu, Xiuwen [2 ]
Tang, Xueming [3 ]
Zhang, Chao [1 ]
机构
[1] Tongji Univ, Shanghai YangZhi Rehabil Hosp, Fundamental Res Ctr, Sch Life Sci & Technol,Shanghai Sunshine Rehabil C, Shanghai 201619, Peoples R China
[2] Shanghai Acad Agr Sci, Inst Biotechnol Res, Key Lab Agr Genet & Breeding, Shanghai 201106, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai 200240, Peoples R China
关键词
Helicobacter pylori; UreB gene; RPA-CRISPR; Cas12a; Rapid high-throughput detection; PYLORI INFECTION; UREASE; SALIVA; AMPLIFICATION; DIAGNOSIS; PCR; DNA;
D O I
10.1016/j.cca.2022.12.013
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Background: Helicobacter pylori lives in the human stomach and causes gastric cancer and other gastric diseases. The development of molecular technology has facilitated low-cost, rapid, and high-throughput detection of H. pylori.Materials and methods: The combination of isothermal recombinase polymerase amplification (RPA) and CRISPR-Cas12a was used for early diagnosis and monitoring of H. pylori in clinical settings. The UreB genes from 242 H. pylori strains were subjected to cluster analysis, and we designed corresponding RPA primers and screened 2 sets of CRISPR-derived RNAs (crRNAs) for accurate H. pylori recognition. We then performed specificity and sensitivity validation of seven strains using this RPA-CRISPR/Cas12a method. In addition, the cut-off values of this RPA-CRISPR/Cas12a method based on fluorescence values (i.e., RPA-CRISPR/Cas12a-FT) were determined by comparison with quantitative PCR (qPCR), and further experiments comparing different methods were per -formed using clinical samples.Results: We developed a rapid detection system based on the combination of RPA and CRISPR-Cas12a, which was applied to the early diagnosis and monitoring of H. pylori in clinical settings. The RPA-CRISPR/Cas12a system was used to detect the UreB gene. We found that the limit of detection (LOD) for the CRISPR/Cas12a method based on the lateral flow dipstick result (i.e., CRISPR/Cas12a-LFD) was 100 copies, the cut-off value was 1.4; and for CRISPR/Cas12a-FT the LOD was 50 copies. This system was used to assess clinical samples and showed high reproducibility with proof-of-concept sensitivity, and the whole detection process was completed within 40 min.Conclusion: As a diagnostic method that can detect the UreB gene of H. pylori in gastric tissue samples rapidly, sensitively, visually, and in a high throughput manner, our method provides a new diagnostic option for clini-cians. This system is ideal for hospitals or testing sites with limited medical resources.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A rapid and ultra-sensitive dual readout platform for Klebsiella pneumoniae detection based on RPA-CRISPR/Cas12a
    Tan, Meiying
    Liang, Lina
    Liao, Chuan
    Zhou, Zihan
    Long, Shaoping
    Yi, Xueli
    Wang, Chunfang
    Wei, Caiheng
    Cai, Jinyuan
    Li, Xuebin
    Wei, Guijiang
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2024, 14
  • [42] Comparative Evaluation of PCR-Based, LAMP and RPA-CRISPR/Cas12a Assays for the Rapid Detection of Diaporthe aspalathi
    Dong, Jiali
    Feng, Wanzhen
    Lin, Mingze
    Chen, Shuzhe
    Liu, Xiaozhen
    Wang, Xiaodan
    Chen, Qinghe
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [43] Non-canonical CRISPR/Cas12a-based technology: A novel horizon for biosensing in nucleic acid detection
    Lei, Xueying
    Cao, Shengnan
    Liu, Tao
    Wu, Yongjun
    Yu, Songcheng
    TALANTA, 2024, 271
  • [44] Establishment of an ultrasensitive and visual detection platform for Neospora caninum based-on the RPA-CRISPR/Cas12a system
    Wang, Li
    Li, Xin
    Li, Lu
    Cao, Lili
    Zhao, Zhiteng
    Huang, Taojun
    Li, Jianhua
    Zhang, Xichen
    Cao, Songgao
    Zhang, Nan
    Wang, Xiaocen
    Gong, Pengtao
    TALANTA, 2024, 269
  • [45] Species discrimination of Fritillaria Bulbus using PCR-CRISPR/ Cas12a-based nucleic acid detection
    Yang, Dongfan
    Yang, Yanchao
    Lin, Wanjun
    Shi, Meina
    Huang, Zifeng
    Zhang, Xuening
    Ma, Wenzhe
    JOURNAL OF APPLIED RESEARCH ON MEDICINAL AND AROMATIC PLANTS, 2024, 43
  • [46] Development of filtration-based RPA-CRISPR/Cas12a system for rapid, sensitive and visualized detection of Salmonella in ready-to-eat salads
    Bae, Ji-Yun
    Lee, So-young
    Oh, Se-Wook
    MICROCHEMICAL JOURNAL, 2024, 206
  • [47] Application of a rapid and sensitive RPA-CRISPR/Cas12a assay for naked-eye detection of Haemophilus parasuis
    Hao, Jie
    Jia, Mengyan
    Liu, Yiting
    Lv, Zhenlin
    Chen, Junming
    Xiong, Wenguang
    Zeng, Zhenling
    ANALYTICA CHIMICA ACTA, 2024, 1287
  • [48] Rapid Nucleic Acid Detection of Listeria monocytogenes Based on RAA-CRISPR Cas12a System
    Yang, Yujuan
    Kong, Xiangxiang
    Yang, Jielin
    Xue, Junxin
    Niu, Bing
    Chen, Qin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (06)
  • [49] A rapid and inexpensive nucleic acid detection platform for Listeria monocytogenes based on the CRISPR/Cas12a system
    Xiao, Yiran
    Ren, Honglin
    Wang, Han
    Zou, Deying
    Liu, Yixin
    Li, Haosong
    Hu, Pan
    Li, Yansong
    Liu, Zengshan
    Lu, Shiying
    TALANTA, 2023, 259
  • [50] CRISPR/Cas12a-Based Detection Platform for Early and Rapid Diagnosis of Scrub Typhus
    Bhardwaj, Pooja
    Nanaware, Nikita Shrikant
    Behera, Sthita Pragnya
    Kulkarni, Smita
    Deval, Hirawati
    Kumar, Rajesh
    Dwivedi, Gaurav Raj
    Kant, Rajni
    Singh, Rajeev
    BIOSENSORS-BASEL, 2023, 13 (12):