A survey on few-shot class-incremental learning

被引:51
|
作者
Tian, Songsong [1 ,2 ,4 ]
Li, Lusi [5 ]
Li, Weijun [1 ,3 ,4 ]
Ran, Hang [1 ,4 ]
Ning, Xin [1 ,3 ,4 ]
Tiwari, Prayag [6 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Integrated Circuits, Beijing 100083, Peoples R China
[4] Beijing Key Lab Semicond Neural Network Intellige, Beijing 100083, Peoples R China
[5] Old Dominion Univ, Dept Comp Sci, Norfolk, VA 23529 USA
[6] Halmstad Univ, Sch Informat Technol, S-30118 Halmstad, Sweden
基金
北京市自然科学基金;
关键词
Few-shot learning; Class-incremental learning; Catastrophic forgetting; Overfitting; Performance evaluation; NEURAL-NETWORKS;
D O I
10.1016/j.neunet.2023.10.039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental learning, focusing on introducing FSCIL from two perspectives, while reviewing over 30 theoretical research studies and more than 20 applied research studies. From the theoretical perspective, we provide a novel categorization approach that divides the field into five subcategories, including traditional machine learning methods, meta learning-based methods, feature and feature space-based methods, replay-based methods, and dynamic network structure-based methods. We also evaluate the performance of recent theoretical research on benchmark datasets of FSCIL. From the application perspective, FSCIL has achieved impressive achievements in various fields of computer vision such as image classification, object detection, and image segmentation, as well as in natural language processing and graph. We summarize the important applications. Finally, we point out potential future research directions, including applications, problem setups, and theory development. Overall, this paper offers a comprehensive analysis of the latest advances in FSCIL from a methodological, performance, and application perspective.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 50 条
  • [21] Prompt-based learning for few-shot class-incremental learning
    Yuan, Jicheng
    Chen, Hang
    Tian, Songsong
    Li, Wenfa
    Li, Lusi
    Ning, Enhao
    Zhang, Yugui
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 120 : 287 - 295
  • [22] Rethinking Few-Shot Class-Incremental Learning: Learning from Yourself
    Tang, Yu-Ming
    Peng, Yi-Xing
    Meng, Jingke
    Zheng, Wei-Shi
    COMPUTER VISION - ECCV 2024, PT LXI, 2025, 15119 : 108 - 128
  • [23] Few-Shot Class-Incremental Learning Based on Feature Distribution Learning
    Yao, Guangle
    Zhu, Juntao
    Zhou, Wenlong
    Zhang, Guiyu
    Zhang, Wei
    Zhang, Qian
    Computer Engineering and Applications, 2023, 59 (14) : 151 - 157
  • [24] Rethinking few-shot class-incremental learning: A lazy learning baseline
    Qin, Zhili
    Han, Wei
    Liu, Jiaming
    Zhang, Rui
    Yang, Qingli
    Sun, Zejun
    Shao, Junming
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [25] Rethinking Self-Supervision for Few-Shot Class-Incremental Learning
    Zhao, Linglan
    Lu, Jing
    Cheng, Zhanzhan
    Liu, Duo
    Fang, Xiangzhong
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 726 - 731
  • [26] Knowledge Representation by Generic Models for Few-Shot Class-Incremental Learning
    Chen, Xiaodong
    Jiang, Weijie
    Huang, Zhiyong
    Su, Jiangwen
    Yu, Yuanlong
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 1237 - 1247
  • [27] A Few-Shot Class-Incremental Learning Method for Network Intrusion Detection
    Du, Lei
    Gu, Zhaoquan
    Wang, Ye
    Wang, Le
    Jia, Yan
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2389 - 2401
  • [28] Few-Shot Class-Incremental Learning with Meta-Learned Class Structures
    Zheng, Guangtao
    Zhang, Aidong
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 421 - 430
  • [29] Few-Shot Class-Incremental Learning for Network Intrusion Detection Systems
    Di Monda, Davide
    Montieri, Antonio
    Persico, Valerio
    Voria, Pasquale
    De Ieso, Matteo
    Pescape, Antonio
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 6736 - 6757
  • [30] Improved Continually Evolved Classifiers for Few-Shot Class-Incremental Learning
    Wang, Ye
    Zhao, Guoshuai
    Qian, Xueming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 1123 - 1134