Supporting urban greenspace with microbial symbiosis

被引:4
|
作者
Stewart, Justin D. [1 ,2 ,5 ]
Kiers, E. Toby [1 ,2 ]
Anthony, Mark A. [3 ]
Kiers, A. Haven [4 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam Inst Life & Environm A LIFE, Sect Ecol & Evolut, Amsterdam, Netherlands
[2] Soc Protect Underground Networks SPUN, Dover, DE 19901 USA
[3] Swiss Fed Inst Forest Snow & Landscape Res WSL, Birmensdorf, Switzerland
[4] Univ Calif Davis, Dept Human Ecol, Davis, CA USA
[5] Vrije Univ Amsterdam, Amsterdam Inst Life & Environm A LIFE, Sect Ecol & Evolut, Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands
关键词
green roof; greenspace; landscape architecture; microbiome; mutualism; mycorrhizal; rhizobia; urban; ARBUSCULAR MYCORRHIZAL FUNGI; MULTIPLE ECOSYSTEM FUNCTIONS; PLANT DIVERSITY; HOST PLANTS; SOIL; GROWTH; BIODIVERSITY; INOCULATION; RESTORATION; COMMUNITIES;
D O I
10.1002/ppp3.10403
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Societal Impact StatementCities are stressful environments for plants, plagued by heat, pollution, and biodiversity loss. As a result, plant communities tend to suffer in green roofs, parks, and living walls. Finding solutions to help plants grow in stressful environments is a goal of the sustainable city. One solution is to better incorporate plant-microbe symbiosis in green architecture. Symbiotic fungi and bacteria can provide nutrients, water, and help plants to cope with urban stress. The reconceptualization of green infrastructure from a microbial-focused perspective has the potential to improve plant health, growth, and diversity in cities.SummaryPlant communities in cities help maintain the health and stability of urban ecosystems and inhabitants. Ensuring that greenspace is healthy and productive is a key goal of green infrastructure and landscape architecture (GILA). However, cities are stressful environments for plants. In natural ecosystems, plants live in symbiosis with fungi, bacteria, and other microbes that can help alleviate stress. Microbial communities may also help with stress associated with urban environments. Incorporating mutualistic symbioses into GILA is a sustainable way to enhance urban greenspace. Here, we address key stressors for GILA in cities, including dependency on fertilizers, pathogens, drought, fewer pollinators, pollution, and reduced plant biodiversity. For each of these stressors, we discuss how symbiotic fungi and bacteria can help mitigate these issues, including case-use scenarios. We conclude with new approaches to deliberately incorporate mutualisms in cities and open dialogues with stakeholders. Cities are stressful environments for plants, plagued by heat, pollution, and biodiversity loss. As a result, plant communities tend to suffer in green roofs, parks, and living walls. Finding solutions to help plants grow in stressful environments is a goal of the sustainable city. One solution is to better incorporate plant-microbe symbiosis in green architecture. Symbiotic fungi and bacteria can provide nutrients, water, and help plants to cope with urban stress. The reconceptualization of green infrastructure from a microbial-focused perspective has the potential to improve plant health, growth, and diversity in cities.image Las ciudades son entornos estresantes para las plantas, plagadas de calor, contaminacion y perdida de biodiversidad. Como consecuencia, las comunidades vegetales de los tejados verdes, los parques o los muros vivos se resienten. Encontrar soluciones para ayudar a las plantas a crecer en entornos estresantes es un objetivo de la ciudad sostenible. Una solucion es incorporar mejor los simbiontes microbianos en la arquitectura verde. Los hongos y las bacterias simbioticas pueden aportar nutrientes, agua y ayudar a las plantas a hacer frente al estres urbano. La reconceptualizacion de la infraestructura verde desde una perspectiva centrada en los microbios tiene el potencial de mejorar la salud, el crecimiento y la diversidad de las plantas en las ciudades.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 50 条
  • [21] Symbiosis Studies in Microbial Ecology
    Kamagata, Yoichi
    Narihiro, Takashi
    MICROBES AND ENVIRONMENTS, 2016, 31 (03) : 201 - 203
  • [22] Microbial symbiosis in marine sponges
    Lee, YK
    Lee, JH
    Lee, HK
    JOURNAL OF MICROBIOLOGY, 2001, 39 (04) : 254 - 264
  • [23] The effect of urban greenspace on adolescent sleep patterns
    Tsomokos, Dimitris I.
    Ji, Dongying
    Mueller, Marie A. E.
    Papachristou, Efstathios
    Flouri, Eirini
    LANDSCAPE RESEARCH, 2024, 49 (01) : 33 - 47
  • [24] CARBON STORAGE AND FLUX IN URBAN RESIDENTIAL GREENSPACE
    JO, HK
    MCPHERSON, EG
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 1995, 45 (02) : 109 - 133
  • [25] Urban Greenspace Exposure, Stress, and Cardiovascular Function
    Stopforth, Cameron
    Simpson, Anna
    Willis, Sean
    Smith, Ted
    Bhatnagar, Aruni
    Keith, Rachel
    CIRCULATION, 2024, 150
  • [26] Mechanisms underlying microbial symbiosis
    Russell, Jacob A.
    Oliver, Kerry M.
    MECHANISMS UNDERLYING MICROBIAL SYMBIOSIS, 2020, 58 : 1 - 25
  • [27] Defensive symbiosis: a microbial perspective
    Clay, Keith
    FUNCTIONAL ECOLOGY, 2014, 28 (02) : 293 - 298
  • [28] Microbial warfare and the evolution of symbiosis
    Patel, Matishalin
    West, Stuart
    BIOLOGY LETTERS, 2022, 18 (12)
  • [29] Novelty and nostalgia in urban greenspace: Refugee perspectives
    Rishbeth, C
    Finney, N
    TIJDSCHRIFT VOOR ECONOMISCHE EN SOCIALE GEOGRAFIE, 2006, 97 (03) : 281 - 295
  • [30] Remote sensing of urban greenspace exposure and equality: Scaling effects from greenspace and population mapping
    Wu, Shengbiao
    Yu, Wenbo
    An, Jiafu
    Lin, Chen
    Chen, Bin
    URBAN FORESTRY & URBAN GREENING, 2023, 90