Supporting urban greenspace with microbial symbiosis

被引:4
|
作者
Stewart, Justin D. [1 ,2 ,5 ]
Kiers, E. Toby [1 ,2 ]
Anthony, Mark A. [3 ]
Kiers, A. Haven [4 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam Inst Life & Environm A LIFE, Sect Ecol & Evolut, Amsterdam, Netherlands
[2] Soc Protect Underground Networks SPUN, Dover, DE 19901 USA
[3] Swiss Fed Inst Forest Snow & Landscape Res WSL, Birmensdorf, Switzerland
[4] Univ Calif Davis, Dept Human Ecol, Davis, CA USA
[5] Vrije Univ Amsterdam, Amsterdam Inst Life & Environm A LIFE, Sect Ecol & Evolut, Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands
关键词
green roof; greenspace; landscape architecture; microbiome; mutualism; mycorrhizal; rhizobia; urban; ARBUSCULAR MYCORRHIZAL FUNGI; MULTIPLE ECOSYSTEM FUNCTIONS; PLANT DIVERSITY; HOST PLANTS; SOIL; GROWTH; BIODIVERSITY; INOCULATION; RESTORATION; COMMUNITIES;
D O I
10.1002/ppp3.10403
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Societal Impact StatementCities are stressful environments for plants, plagued by heat, pollution, and biodiversity loss. As a result, plant communities tend to suffer in green roofs, parks, and living walls. Finding solutions to help plants grow in stressful environments is a goal of the sustainable city. One solution is to better incorporate plant-microbe symbiosis in green architecture. Symbiotic fungi and bacteria can provide nutrients, water, and help plants to cope with urban stress. The reconceptualization of green infrastructure from a microbial-focused perspective has the potential to improve plant health, growth, and diversity in cities.SummaryPlant communities in cities help maintain the health and stability of urban ecosystems and inhabitants. Ensuring that greenspace is healthy and productive is a key goal of green infrastructure and landscape architecture (GILA). However, cities are stressful environments for plants. In natural ecosystems, plants live in symbiosis with fungi, bacteria, and other microbes that can help alleviate stress. Microbial communities may also help with stress associated with urban environments. Incorporating mutualistic symbioses into GILA is a sustainable way to enhance urban greenspace. Here, we address key stressors for GILA in cities, including dependency on fertilizers, pathogens, drought, fewer pollinators, pollution, and reduced plant biodiversity. For each of these stressors, we discuss how symbiotic fungi and bacteria can help mitigate these issues, including case-use scenarios. We conclude with new approaches to deliberately incorporate mutualisms in cities and open dialogues with stakeholders. Cities are stressful environments for plants, plagued by heat, pollution, and biodiversity loss. As a result, plant communities tend to suffer in green roofs, parks, and living walls. Finding solutions to help plants grow in stressful environments is a goal of the sustainable city. One solution is to better incorporate plant-microbe symbiosis in green architecture. Symbiotic fungi and bacteria can provide nutrients, water, and help plants to cope with urban stress. The reconceptualization of green infrastructure from a microbial-focused perspective has the potential to improve plant health, growth, and diversity in cities.image Las ciudades son entornos estresantes para las plantas, plagadas de calor, contaminacion y perdida de biodiversidad. Como consecuencia, las comunidades vegetales de los tejados verdes, los parques o los muros vivos se resienten. Encontrar soluciones para ayudar a las plantas a crecer en entornos estresantes es un objetivo de la ciudad sostenible. Una solucion es incorporar mejor los simbiontes microbianos en la arquitectura verde. Los hongos y las bacterias simbioticas pueden aportar nutrientes, agua y ayudar a las plantas a hacer frente al estres urbano. La reconceptualizacion de la infraestructura verde desde una perspectiva centrada en los microbios tiene el potencial de mejorar la salud, el crecimiento y la diversidad de las plantas en las ciudades.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 50 条
  • [1] Urban greenspace and neighborhood crime
    Wo, James C.
    Rogers, Ethan M.
    CRIMINOLOGY, 2024, 62 (02) : 236 - 275
  • [2] The multifunctional use of urban greenspace
    van Leeuwen, Eveline
    Nijkamp, Peter
    Vaz, Teresa de Noronha
    INTERNATIONAL JOURNAL OF AGRICULTURAL SUSTAINABILITY, 2010, 8 (1-2) : 20 - 25
  • [3] URBAN GREENSPACE - A WOODLAND STUDY
    OBUA, J
    ENVIRONMENTAL CONSERVATION, 1988, 15 (02) : 169 - 171
  • [4] The Materiality of Everyday Practices in Urban Greenspace
    Petersen, Lars Kjerulf
    JOURNAL OF ENVIRONMENTAL POLICY & PLANNING, 2013, 15 (03) : 353 - 370
  • [5] FUNCTIONS OF URBAN GREENSPACE AND ECOSYSTEM SERVICES
    Szumacher, Iwona
    MISCELLANEA GEOGRAPHICA, 2011, 15 : 123 - 129
  • [6] ACCOUNTING FOR BENEFITS AND COSTS OF URBAN GREENSPACE
    MCPHERSON, EG
    LANDSCAPE AND URBAN PLANNING, 1992, 22 (01) : 41 - 51
  • [7] IMPACTS OF URBAN LANDSCAPE FUNCTIONAL TYPES ON URBAN GREENSPACE
    Song, Yantun
    Hao, Rong
    Shi, Zhihua
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2013, 12 (09): : 1829 - 1832
  • [8] More urban greenspace, lower temperature? Moving beyond net change in greenspace
    Wang, Jing
    Zhou, Weiqi
    AGRICULTURAL AND FOREST METEOROLOGY, 2022, 322
  • [9] Microbial symbiosis in Annelida
    Bright, M
    Giere, O
    SYMBIOSIS, 2005, 38 (01) : 1 - 45
  • [10] Urban greenspace types influence the microbial community assembly and antibiotic resistome more in the phyllosphere than in the soil
    Huang X.-R.
    Neilson R.
    Yang L.-Y.
    Deng J.-J.
    Zhou S.-Y.-D.
    Li H.
    Zhu Y.-G.
    Yang X.-R.
    Chemosphere, 2023, 338