Applying deep reinforcement learning to football games has recently received extensive attention. However, this remains challenging due to the excessively high complexity of the football environment, such as high-dynamical game states, sparse rewards, and multiple roles with different capabilities. Existing works aim to address these problems without considering abundant domain knowledge of football. In this article, a football knowledge-embedded learning framework is proposed. Specifically, the pitch control concept is innovatively introduced to design a knowledge-embedded state representation. As a result, a novel pitch control model is designed that quantitatively provides space influence values of a single player, the whole team, and the ball. Different from existing models, this model additionally considers each player's various capabilities, including flexibility, explosive force, and stamina. Furthermore, the deformable convolution network is adopted for state representation extracting, which is used to process the geometric transformation of the players' positions and spatial influence values generated by the pitch control model. Then, based on this comprehensive state representation, a proximal policy optimization-based reinforcement learning scheme is adopted to generate the final policy. Finally, extensive simulations, including learning against a fixed opponent and learning from self-play, clearly show the effectiveness and adaptability of our proposed framework.