Stability of the 2D Boussinesq equations with a velocity damping term in the strip domain

被引:1
|
作者
Luo, Zekai [1 ]
Ren, Xiaoxia [1 ]
机构
[1] North China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
来源
关键词
Boussinesq equations; Strip domain; Low regularity; GLOBAL WELL-POSEDNESS;
D O I
10.1007/s00033-023-01951-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the global well-posedness for the 2D Boussinesq equations with a velocity damping term around the equilibrium state (0, x(2)) in the strip domain R x (0, 1) with Navier-type slip boundary condition. It is worth mentioning that the results of low regularity are obtained using only the energy estimate and the structure of the equations.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] The 2D Boussinesq equations with vertical viscosity and vertical diffusivity
    Adhikari, Dhanapati
    Cao, Chongsheng
    Wu, Jiahong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (05) : 1078 - 1088
  • [42] GLOBAL REGULARITY OF 2D BOUSSINESQ-VOIGT EQUATIONS
    Gong, Menghan
    Ye, Zhuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2025, 23 (02) : 561 - 582
  • [43] Blowup with vorticity control for a 2D model of the Boussinesq equations
    Hoang, V.
    Orcan-Ekmekci, B.
    Radosz, M.
    Yang, H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (12) : 7328 - 7356
  • [44] An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations
    Chae, Dongho
    Constantin, Peter
    Wu, Jiahong
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (03) : 473 - 480
  • [45] Vanishing Dissipation of the 2D Anisotropic Boussinesq Equations in the HalfPlane
    Wang, Peixin
    Xu, Xiaojing
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (03) : 1107 - 1146
  • [46] REGULARITY CRITERIA FOR THE 2D BOUSSINESQ EQUATIONS WITH SUPERCRITICAL DISSIPATION
    Li, Jingna
    Shang, Haifeng
    Wu, Jiahong
    Xu, Xiaojing
    Ye, Zhuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (07) : 1999 - 2022
  • [47] The optimal start control problem for 2D Boussinesq equations
    Baranovskii, E. S.
    IZVESTIYA MATHEMATICS, 2022, 86 (02) : 221 - 242
  • [48] Piecewise optimal distributed controls for 2D Boussinesq equations
    Lee, HC
    Shin, BC
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2000, 23 (03) : 227 - 254
  • [49] On the global regularity of the 2D Boussinesq equations with fractional dissipation
    Ye, Zhuan
    Xu, Xiaojing
    Xue, Liutang
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (8-9) : 1420 - 1439
  • [50] An improved regularity criterion for the 2D inviscid Boussinesq equations
    Ye, Zhuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (12) : 3095 - 3098