Bayesian Structure Learning and Sampling of Bayesian Networks with the R Package BiDAG

被引:12
|
作者
Suter, Polina [1 ,2 ]
Moffa, Giusi [3 ]
Kuipers, Jack [1 ,2 ]
Beerenwinkel, Niko [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Mattenstr 26, CH-4058 Basel, Switzerland
[2] SIB Swiss Inst Bioinformat, CH-4058 Basel, Switzerland
[3] Univ Basel, Dept Math & Comp Sci, Spiegelgasse 1, CH-4051 Basel, Switzerland
来源
JOURNAL OF STATISTICAL SOFTWARE | 2023年 / 105卷 / 09期
关键词
Bayesian networks; dynamic Bayesian networks; structure learning; Bayesian in-ference; MCMC; R; GRAPHICAL MODELS;
D O I
10.18637/jss.v105.i09
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R package BiDAG implements Markov chain Monte Carlo (MCMC) methods for structure learning and sampling of Bayesian networks. The package includes tools to search for a maximum a posteriori (MAP) graph and to sample graphs from the posterior distribution given the data. A new hybrid approach to structure learning enables inference in large graphs. In the first step, we define a reduced search space by means of the PC algorithm or based on prior knowledge. In the second step, an iterative order MCMC scheme proceeds to optimize the restricted search space and estimate the MAP graph. Sampling from the posterior distribution is implemented using either order or partition MCMC. The models and algorithms can handle both discrete and continuous data. The BiDAG package also provides an implementation of MCMC schemes for structure learning and sampling of dynamic Bayesian networks.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
  • [21] GIBBS SAMPLING IN BAYESIAN NETWORKS
    HRYCEJ, T
    ARTIFICIAL INTELLIGENCE, 1990, 46 (03) : 351 - 363
  • [22] BLNN: An R package for training neural networks using Bayesian inference
    Sharaf, Taysseer
    Williams, Theren
    Chehade, Abdallah
    Pokhrel, Keshav
    SOFTWAREX, 2020, 11 (11)
  • [23] Cutset sampling for Bayesian networks
    Bidyuk, Bozhena
    Dechter, Rina
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2007, 28 : 1 - 48
  • [24] Learning Bayesian networks structure with continuous variables
    Wang, Shuang-Cheng
    Li, Xiao-Lin
    Tang, Hai-Yan
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 448 - 456
  • [25] Assessing Credibility in Bayesian Networks Structure Learning
    Barth, Vitor
    Serrao, Fabio
    Maciel, Carlos
    ENTROPY, 2024, 26 (10)
  • [26] Improved Bayesian networks structure learning algorithm
    Fan, Min
    Huang, Xi-Yue
    Shi, Wei-Ren
    Xian, Xiao-Dong
    Xitong Fangzhen Xuebao / Journal of System Simulation, 2008, 20 (17): : 4613 - 4617
  • [27] Approximate structure learning for large Bayesian networks
    Mauro Scanagatta
    Giorgio Corani
    Cassio Polpo de Campos
    Marco Zaffalon
    Machine Learning, 2018, 107 : 1209 - 1227
  • [28] LEARNING ALGORITHMS OF FORM STRUCTURE FOR BAYESIAN NETWORKS
    Philippot, Emilie
    Belaid, Yolande
    Belaid, Abdel
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2149 - 2152
  • [29] Approximate structure learning for large Bayesian networks
    Scanagatta, Mauro
    Corani, Giorgio
    de Campos, Cassio Polpo
    Zaffalon, Marco
    MACHINE LEARNING, 2018, 107 (8-10) : 1209 - 1227
  • [30] Bayesian Structure Learning with Generative Flow Networks
    Deleu, Tristan
    Gois, Antonio
    Emezue, Chris
    Rankawat, Mansi
    Lacoste-Julien, Simon
    Bauer, Stefan
    Bengio, Yoshua
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 518 - 528