Bayesian Structure Learning and Sampling of Bayesian Networks with the R Package BiDAG

被引:8
|
作者
Suter, Polina [1 ,2 ]
Moffa, Giusi [3 ]
Kuipers, Jack [1 ,2 ]
Beerenwinkel, Niko [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Mattenstr 26, CH-4058 Basel, Switzerland
[2] SIB Swiss Inst Bioinformat, CH-4058 Basel, Switzerland
[3] Univ Basel, Dept Math & Comp Sci, Spiegelgasse 1, CH-4051 Basel, Switzerland
来源
JOURNAL OF STATISTICAL SOFTWARE | 2023年 / 105卷 / 09期
关键词
Bayesian networks; dynamic Bayesian networks; structure learning; Bayesian in-ference; MCMC; R; GRAPHICAL MODELS;
D O I
10.18637/jss.v105.i09
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R package BiDAG implements Markov chain Monte Carlo (MCMC) methods for structure learning and sampling of Bayesian networks. The package includes tools to search for a maximum a posteriori (MAP) graph and to sample graphs from the posterior distribution given the data. A new hybrid approach to structure learning enables inference in large graphs. In the first step, we define a reduced search space by means of the PC algorithm or based on prior knowledge. In the second step, an iterative order MCMC scheme proceeds to optimize the restricted search space and estimate the MAP graph. Sampling from the posterior distribution is implemented using either order or partition MCMC. The models and algorithms can handle both discrete and continuous data. The BiDAG package also provides an implementation of MCMC schemes for structure learning and sampling of dynamic Bayesian networks.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
  • [1] Learning Bayesian Networks with the bnlearn R Package
    Scutari, Marco
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 35 (03): : 1 - 22
  • [2] Efficient Sampling and Structure Learning of Bayesian Networks
    Kuipers, Jack
    Suter, Polina
    Moffa, Giusi
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 639 - 650
  • [3] BDgraph: An R Package for Bayesian Structure Learning in Graphical Models
    Mohammadi, Reza
    Wit, Ernst C.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 89 (03): : 1 - 30
  • [4] Structure Learning in Bayesian Networks of a Moderate Size by Efficient Sampling
    He, Ru
    Tian, Jin
    Wu, Huaiqing
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [5] dplbnDE: An R package for discriminative parameter learning of Bayesian Networks by Differential Evolution
    Platas-Lopez, Alejandro
    Guerra-Hernandez, Alejandro
    Grimaldo, Francisco
    Cruz-Ramirez, Nicandro
    Mezura-Montes, Efren
    Quiroz-Castellanos, Marcela
    [J]. SOFTWAREX, 2023, 23
  • [6] BayesNetBP: An R Package for Probabilistic Reasoning in Bayesian Networks
    Yu, Han
    Moharil, Janhavi
    Blair, Rachael Hageman
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2020, 94 (03): : 1 - 31
  • [7] bnstruct: an R package for Bayesian Network structure learning in the presence of missing data
    Franzin, Alberto
    Sambo, Francesco
    Di Camillo, Barbara
    [J]. BIOINFORMATICS, 2017, 33 (08) : 1250 - 1252
  • [8] Distributed structure learning of Bayesian networks
    Huang, Hao
    Huang, Jianqing
    [J]. Journal of Computational Information Systems, 2007, 3 (04): : 1739 - 1746
  • [9] Research of Bayesian networks structure learning
    Bo, Wang
    Huali, Wu
    Canlin, Wang
    [J]. 2007 INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2007, : 266 - 268
  • [10] On Structure Priors for Learning Bayesian Networks
    Eggeling, Ralf
    Viinikka, Jussi
    Vuoksenmaa, Aleksis
    Koivisto, Mikko
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89