NuInsSeg: A fully annotated dataset for nuclei instance segmentation in H&E-stained histological images

被引:2
|
作者
Mahbod, Amirreza [1 ,2 ]
Polak, Christine [2 ]
Feldmann, Katharina [2 ]
Khan, Rumsha [2 ]
Gelles, Katharina [2 ]
Dorffner, Georg [3 ]
Woitek, Ramona [1 ]
Hatamikia, Sepideh [1 ,4 ]
Ellinger, Isabella [2 ]
机构
[1] Danube Private Univ, Res Ctr Med Image Anal & Artificial Intelligence, Dept Med, A-3500 Krems An Der Donau, Austria
[2] Med Univ Vienna, Inst Pathophysiol & Allergy Res, A-1090 Vienna, Austria
[3] Med Univ Vienna, Inst Artificial Intelligence, A-1090 Vienna, Austria
[4] Austrian Ctr Med Innovat & Technol, A-2700 Wiener Neustadt, Austria
关键词
CLASSIFICATION; MONUSAC2020;
D O I
10.1038/s41597-024-03117-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In computational pathology, automatic nuclei instance segmentation plays an essential role in whole slide image analysis. While many computerized approaches have been proposed for this task, supervised deep learning (DL) methods have shown superior segmentation performances compared to classical machine learning and image processing techniques. However, these models need fully annotated datasets for training which is challenging to acquire, especially in the medical domain. In this work, we release one of the biggest fully manually annotated datasets of nuclei in Hematoxylin and Eosin (H&E)-stained histological images, called NuInsSeg. This dataset contains 665 image patches with more than 30,000 manually segmented nuclei from 31 human and mouse organs. Moreover, for the first time, we provide additional ambiguous area masks for the entire dataset. These vague areas represent the parts of the images where precise and deterministic manual annotations are impossible, even for human experts. The dataset and detailed step-by-step instructions to generate related segmentation masks are publicly available on the respective repositories.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Enhancing Histological Image Analysis and Automation through Unsupervised Attention -Guided Deep Learning for Robust Stain Normalization in H&E-Stained Images
    Yang, Z.
    Melemenidis, S.
    Jiang, H.
    Fu, J.
    Viswanathan, V.
    Dutt, S.
    Manjappa, R.
    Soto, L. A.
    Ashraf, R. M.
    Skinner, L.
    Yu, S. J.
    Surucu, M.
    Casey, K.
    Rankin, E.
    Graves, E. E.
    Lu, W.
    Loo, B. W., Jr.
    Gu, X.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E416 - E416
  • [32] Nuclei Segmentation in Hematoxylin and Eosin (H&E)-Stained Histopathological Images Using a Deep Neural Network
    Cayir, Sercan
    Tarcan, Serim Hande
    Ayalti, Samet
    Razavi, Salar
    Khameneh, Fariba
    Cetin, Sukru Burak
    Solmaz, Gizem
    Ozsoy, Gulsah
    Yazici, Cisem
    Kayhan, Cavit Kerem
    Tokat, Fatma
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [33] Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
    Salvi, Massimo
    Molinari, Filippo
    BIOMEDICAL ENGINEERING ONLINE, 2018, 17
  • [34] Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
    Massimo Salvi
    Filippo Molinari
    BioMedical Engineering OnLine, 17
  • [35] An efficient CNN based algorithm for detecting melanoma cancer regions in H&E-stained images
    Alheejawi, Salah
    Berendt, Richard
    Jha, Naresh
    Maity, Santi P.
    Mandal, Mrinal
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3982 - 3985
  • [36] MARKER-CONTROLLED WATERSHED SEGMENTATION OF NUCLEI IN H&E STAINED BREAST CANCER BIOPSY IMAGES
    Veta, M.
    Huisman, A.
    Viergever, M. A.
    van Diest, P. J.
    Pluim, J. P. W.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 618 - 621
  • [37] Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard
    Bulten, Wouter
    Bandi, Peter
    Hoven, Jeffrey
    van de Loo, Rob
    Lotz, Johannes
    Weiss, Nick
    van der Laak, Jeroen
    van Ginneken, Bram
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [38] Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard
    Wouter Bulten
    Péter Bándi
    Jeffrey Hoven
    Rob van de Loo
    Johannes Lotz
    Nick Weiss
    Jeroen van der Laak
    Bram van Ginneken
    Christina Hulsbergen-van de Kaa
    Geert Litjens
    Scientific Reports, 9
  • [39] Predict Ki-67 Positive Cells in H&E-Stained Images Using Deep Learning Independently From IHC-Stained Images
    Liu, Yiqing
    Li, Xi
    Zheng, Aiping
    Zhu, Xihan
    Liu, Shuting
    Hu, Mengying
    Luo, Qianjiang
    Liao, Huina
    Liu, Mubiao
    He, Yonghong
    Chen, Yupeng
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7
  • [40] Automated detection and classification of nuclei in PAX5 and H&E-stained tissue sections of follicular lymphoma
    Dimitropoulos, Kosmas
    Barmpoutis, Panagiotis
    Koletsa, Triantafyllia
    Kostopoulos, Ioannis
    Grammalidis, Nikos
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (01) : 145 - 153