NuInsSeg: A fully annotated dataset for nuclei instance segmentation in H&E-stained histological images

被引:2
|
作者
Mahbod, Amirreza [1 ,2 ]
Polak, Christine [2 ]
Feldmann, Katharina [2 ]
Khan, Rumsha [2 ]
Gelles, Katharina [2 ]
Dorffner, Georg [3 ]
Woitek, Ramona [1 ]
Hatamikia, Sepideh [1 ,4 ]
Ellinger, Isabella [2 ]
机构
[1] Danube Private Univ, Res Ctr Med Image Anal & Artificial Intelligence, Dept Med, A-3500 Krems An Der Donau, Austria
[2] Med Univ Vienna, Inst Pathophysiol & Allergy Res, A-1090 Vienna, Austria
[3] Med Univ Vienna, Inst Artificial Intelligence, A-1090 Vienna, Austria
[4] Austrian Ctr Med Innovat & Technol, A-2700 Wiener Neustadt, Austria
关键词
CLASSIFICATION; MONUSAC2020;
D O I
10.1038/s41597-024-03117-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In computational pathology, automatic nuclei instance segmentation plays an essential role in whole slide image analysis. While many computerized approaches have been proposed for this task, supervised deep learning (DL) methods have shown superior segmentation performances compared to classical machine learning and image processing techniques. However, these models need fully annotated datasets for training which is challenging to acquire, especially in the medical domain. In this work, we release one of the biggest fully manually annotated datasets of nuclei in Hematoxylin and Eosin (H&E)-stained histological images, called NuInsSeg. This dataset contains 665 image patches with more than 30,000 manually segmented nuclei from 31 human and mouse organs. Moreover, for the first time, we provide additional ambiguous area masks for the entire dataset. These vague areas represent the parts of the images where precise and deterministic manual annotations are impossible, even for human experts. The dataset and detailed step-by-step instructions to generate related segmentation masks are publicly available on the respective repositories.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] NuInsSeg: A fully annotated dataset for nuclei instance segmentation in H&E-stained histological images
    Amirreza Mahbod
    Christine Polak
    Katharina Feldmann
    Rumsha Khan
    Katharina Gelles
    Georg Dorffner
    Ramona Woitek
    Sepideh Hatamikia
    Isabella Ellinger
    Scientific Data, 11
  • [2] CryoNuSeg: A dataset for nuclei instance segmentation of cryosectioned H&E-stained histological images
    Mahbod, Amirreza
    Schaefer, Gerald
    Bancher, Benjamin
    Loew, Christine
    Dorffner, Georg
    Ecker, Rupert
    Ellinger, Isabella
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 132
  • [3] Automatic extraction of cell nuclei from H&E-stained histopathological images
    Yi F.
    Huang J.
    Yang L.
    Xie Y.
    Xiao G.
    Xiao, Guanghua (guanghua.xiao@utsouthwestern.edu), 1600, SPIE (04):
  • [4] Color normalization of faded H&E-stained histological images using spectral matching
    Azevedo Tosta, Thaina A.
    de Faria, Paulo Rogerio
    Neves, Leandro Alves
    do Nascimento, Marcelo Zanchetta
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 111
  • [5] Computational normalization of H&E-stained histological images: Progress, challenges and future potential
    Azevedo Tosta, Thaina A.
    de Faria, Paulo Rogerio
    Neves, Leandro Alves
    do Nascimento, Marcelo Zanchetta
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 95 : 118 - 132
  • [6] Automatic tumour segmentation in H&E-stained whole-slide images of the pancreas
    Vendittelli, P.
    Smeets, E. M. M.
    Litjens, G. J. S.
    MEDICAL IMAGING 2022: DIGITAL AND COMPUTATIONAL PATHOLOGY, 2022, 12039
  • [7] A seeding-searching-ensemble method for gland segmentation in H&E-stained images
    Yizhe Zhang
    Lin Yang
    John D. MacKenzie
    Rageshree Ramachandran
    Danny Z. Chen
    BMC Medical Informatics and Decision Making, 16
  • [8] A seeding-searching-ensemble method for gland segmentation in H&E-stained images
    Zhang, Yizhe
    Yang, Lin
    MacKenzie, John D.
    Ramachandran, Rageshree
    Chen, Danny Z.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2016, 16
  • [9] Deep Neural Network Pruning for Nuclei Instance Segmentation in Hematoxylin and Eosin-Stained Histological Images
    Mahbod, Amirreza
    Entezari, Rahim
    Ellinger, Isabella
    Saukh, Olga
    APPLICATIONS OF MEDICAL ARTIFICIAL INTELLIGENCE, AMAI 2022, 2022, 13540 : 108 - 117
  • [10] Rapid artefact removal and H&E-stained tissue segmentation
    B. A. Schreiber
    J. Denholm
    F. Jaeckle
    M. J. Arends
    K. M. Branson
    C.-B. Schönlieb
    E. J. Soilleux
    Scientific Reports, 14