CCMix: Curriculum of Class-Wise Mixup for Long-Tailed Medical Image Classification

被引:0
|
作者
Li, Sirui [1 ]
Zhang, Fuheng [1 ]
Wei, Tianyunxi [1 ]
Lin, Li [1 ,2 ]
Huang, Yijin [1 ,3 ]
Cheng, Pujin [1 ]
Tang, Xiaoying [1 ,4 ]
机构
[1] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
[3] Univ British Columbia, Sch Biomed Engn, Vancouver, BC, Canada
[4] Southern Univ Sci & Technol, Jiaxing Res Inst, Jiaxing, Peoples R China
基金
中国国家自然科学基金;
关键词
Long-tailed Learning; Medical Image Classification; Mixup;
D O I
10.1007/978-3-031-45676-3_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning-based methods have been widely used for medical image classification. However, in clinical practice, rare diseases are usually underrepresented with limited labeled data, which result in long-tailed medical datasets and significantly degrade the performance of deep classification networks. Previous strategies employ re-sampling or reweighting techniques to alleviate this issue by increasing the influence of underrepresented classes and reducing the influence of overrepresented ones. Still, poor performance may occur due to overfitting of the tail classes. Further, Mixup is employed to introduce additional information into model training. Despite considerable improvements, the significant noise in medical images means that random batch mixing may introduce ambiguity into training, thereby impair the performance. This observation motivates us to develop a fine-grained mixing approach. In this paper we present Curriculum of Class-wise Mixup (CCMix), a novel method for addressing the challenge of long-tailed distributions. CCMix leverages a novel curriculum that takes into account both the degree of mixing and the class-wise performance to identify the ideal Mixup proportions of different classes. Our method's simplicity enables its effortless integration with existing long-tailed recognition techniques. Comprehensive experiments on two long-tailed medical image classification datasets demonstrate that our method, requiring no modifications to the framework structure or algorithmic details, achieves state-of-the-art results across diverse long-tailed classification benchmarks. The source code is available at https://github.com/sirileeee/CCMix.
引用
收藏
页码:303 / 313
页数:11
相关论文
共 50 条
  • [31] Dynamic Mixup for Multi-Label Long-Tailed Food Ingredient Recognition
    Gao, Jixiang
    Chen, Jingjing
    Fu, Huazhu
    Jiang, Yu-Gang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4764 - 4773
  • [32] SAR Image Quality Assessment: From Sample-Wise to Class-Wise
    Yu, Ziyi
    Dong, Ganggang
    Liu, Hongwei
    REMOTE SENSING, 2023, 15 (08)
  • [33] Space-Transform Margin Loss with Mixup for Long-Tailed Visual Recognition
    Zhou, Fangyu
    Chen, Xicheng
    Ye, Haibo
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 67 - 79
  • [34] Multi-label Aerial Image Classification using A Bidirectional Class-wise Attention Network
    Hua, Yuansheng
    Mou, Lichao
    Zhu, Xiao Xiang
    2019 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2019,
  • [35] Class Activation Maps-based Feature Augmentation for long-tailed classification
    Niu, Jiawei
    Zhang, Zuowei
    Liu, Zhunga
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [36] SAFA: Sample-Adaptive Feature Augmentation for Long-Tailed Image Classification
    Hong, Yan
    Zhang, Jianfu
    Sun, Zhongyi
    Yan, Ke
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 587 - 603
  • [37] A Long-Tailed Image Classification Method Based on Enhanced Contrastive Visual Language
    Song, Ying
    Li, Mengxing
    Wang, Bo
    SENSORS, 2023, 23 (15)
  • [38] Distributionally Robust Loss for Long-Tailed Multi-label Image Classification
    Lin, Dekun
    Peng, Tailai
    Chen, Rui
    Xie, Xinran
    Qin, Xiaolin
    Cui, Zhe
    COMPUTER VISION - ECCV 2024, PT XXXIII, 2025, 15091 : 417 - 433
  • [39] Probability Guided Loss for Long-Tailed Multi-Label Image Classification
    Lin, Dekun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 1577 - 1585
  • [40] Effect of Stage Training for Long-Tailed Multi-Label Image Classification
    Yamagishi, Yosuke
    Hanaoka, Shohei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 2713 - 2720