On the nanoscale oxide dispersion via in-situ atmospheric oxidation during laser powder bed fusion

被引:4
|
作者
Yin, Houshang [1 ]
Wei, Binqiang [2 ]
Shmatok, Andrii [1 ]
Yang, Jingfan [3 ]
Salek, Md Fahim [4 ]
Beckingham, Lauren [4 ]
Prorok, Bart [1 ]
Wang, Jian [2 ]
Lou, Xiaoyuan [3 ,5 ]
机构
[1] Auburn Univ, Mat Res & Educ Ctr, Dept Mech Engn, Auburn, AL 36849 USA
[2] Univ Nebraska, Lincoln, NE 68588 USA
[3] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47906 USA
[4] Auburn Univ, Dept Civil & Environm Engn, Auburn, AL 36849 USA
[5] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47906 USA
基金
美国国家科学基金会;
关键词
Oxide dispersion strengthening (ODS); Oxidation; Austenitic stainless steel; Laser -powder bed fusion additive; manufacturing; 316L STAINLESS-STEEL; STRENGTH; SPATTER; ALLOY; INCLUSION; PARTICLES; METAL;
D O I
10.1016/j.jmatprotec.2023.118191
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In-situ oxidation during laser additive manufacturing (AM) is considered a more economical approach to producing AM oxide dispersion-strengthened (ODS) alloys. However, there is very few success in making AM ODS alloys with oxide density comparable to commercial ODS alloys made by conventional means. To explore the key mechanisms that prevent the high-density dispersion of nanoscale oxides during in-situ reactive AM, we investigated oxide dispersion by in-situ gas-phase reaction during laser powder bed fusion (LPBF) with respect to oxygen gettering elements with different oxygen affinity, getter concentration, atmospheric oxygen level, and laser parameters. Our results show that in-situ oxidation in a high-oxygen printing atmosphere during LPBF AM cannot effectively produce good-quality ODS steels, even when the amount of oxygen pick-up from the atmosphere into the melt pool is comparable to the oxygen level in commercial ODS alloys. We found that surface oxidation and oxide agglomeration in the melt pool prevent the high-density dispersion of nanoscale oxides. In addition, oxide agglomeration also contributes to a higher amount of manufacturing defects. Powder spattering plays a secondary impact on oxygen loss.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Oxide and spatter powder formation during laser powder bed fusion of Hastelloy X
    Gasper, A. N. D.
    Hickman, D.
    Ashcroft, I.
    Sharma, S.
    Wang, X.
    Szost, B.
    Johns, D.
    Clare, A. T.
    POWDER TECHNOLOGY, 2019, 354 : 333 - 337
  • [32] Performance evaluation of in-situ near-infrared melt pool monitoring during laser powder bed fusion
    Moshiri, Mandana
    Pedersen, David Bue
    Tosello, Guido
    Nadimpalli, Venkata Karthik
    VIRTUAL AND PHYSICAL PROTOTYPING, 2023, 18 (01)
  • [33] In-Situ Alloying of 304L Stainless Steel by Laser Powder Bed Fusion
    Zhang Hao
    Hou Yaqing
    Wang Xuandong
    Su Hang
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2023, 50 (04):
  • [34] In-situ infrared thermographic inspection for local powder layer thickness measurement in laser powder bed fusion
    Liu, Tao
    Lough, Cody S.
    Sehhat, Hossein
    Ren, Yi Ming
    Christofides, Panagiotis D.
    Kinzel, Edward C.
    Leu, Ming C.
    ADDITIVE MANUFACTURING, 2022, 55
  • [35] An integrated simulation model towards laser powder bed fusion in-situ alloying technology
    Hou, Yaqing
    Su, Hang
    Zhang, Hao
    Li, Fafa
    Wang, Xuandong
    He, Yazhou
    He, Dupeng
    MATERIALS & DESIGN, 2023, 228
  • [36] Quasi In-Situ Study of Microstructure in a Laser Powder Bed Fusion Martensitic Stainless Steel
    Ayda Shahriari
    Mehdi Sanjari
    Mahdi Mahmoudiniya
    Hadi Pirgazi
    Babak Shalchi Amirkhiz
    Leo A. I. Kestens
    Mohsen Mohammadi
    Metallurgical and Materials Transactions A, 2024, 55 : 1302 - 1310
  • [37] In-situ monitoring of laser-based powder bed fusion using fringe projection
    Remani, Afaf
    Rossi, Arianna
    Pena, Fernando
    Thompson, Adam
    Dardis, John
    Jones, Nick
    Senin, Nicola
    Leach, Richard
    ADDITIVE MANUFACTURING, 2024, 90
  • [38] In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review
    McCann, Ronan
    Obeidi, Muhannad A.
    Hughes, Cian
    McCarthy, Eanna
    Egan, Darragh S.
    Vijayaraghavan, Rajani K.
    Joshi, Ajey M.
    Garzon, Victor Acinas
    Dowling, Denis P.
    McNally, Patrick J.
    Brabazon, Dermot
    ADDITIVE MANUFACTURING, 2021, 45
  • [39] In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion
    Hojjatzadeh, S. Mohammad H.
    Guo, Qilin
    Parab, Niranjan D.
    Qu, Minglei
    Escano, Luis, I
    Fezzaa, Kamel
    Everhart, Wes
    Sun, Tao
    Chen, Lianyi
    MATERIALS, 2021, 14 (11)
  • [40] Quasi In-Situ Study of Microstructure in a Laser Powder Bed Fusion Martensitic Stainless Steel
    Shahriari, Ayda
    Sanjari, Mehdi
    Mahmoudiniya, Mahdi
    Pirgazi, Hadi
    Amirkhiz, Babak Shalchi
    Kestens, Leo A. I.
    Mohammadi, Mohsen
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2024, 55 (05): : 1302 - 1310